共查询到20条相似文献,搜索用时 0 毫秒
1.
The specialized DNA polymerase μ (pol μ) intervenes in the repair mechanism non-homologous end-joining (NHEJ) as an end-processing factor but its role has not been fully elucidated. Pol μ has been shown to participate in DNA synthesis at junctions in vitro, including on unpaired substrates, and to promote annealing. However, the phenotypes observed in vivo poorly recapitulate the functions of pol μ reported in vitro. We analysed the repair of DNA double-strand breaks (DSBs) in a cellular context using improved NHEJ substrates. These substrates do not replicate in mammalian cells, thereby result in clonal repair events, which allows the measure of the efficiency of repair. We validated this paradigm by comparing the repair of NHEJ substrates to the repair reported for chromosome DSBs in mouse cells. Molecular analysis and, in most cases sequencing of more than 1500 repair events on a variety of NHEJ substrates in wild type and pol μ(-/-) mouse embryonic fibroblasts shows that, unexpectedly, the absence of pol μ decreases the efficiency of joining of all types of DSBs, including those that do not undergo end-processing. Importantly, by reducing the efficiency of accurate events, lack of pol μ also affects the overall fidelity of the repair process. We also show that, although pol μ does not help protect DNA ends from resection, the efficiency of repair of resected ends is reduced in the absence of pol μ. Interestingly, the DNA synthesis activity of pol μ, including on non-aligned substrates, appears negligible at least in a cellular context. Our data point to a critical role for pol μ as a global repair player that increases the efficiency and the fidelity of NHEJ. 相似文献
2.
Tong Zhou Konstantin Akopiants Susovan Mohapatra Peck-Sun Lin Kristoffer Valerie Dale A. Ramsden Susan P. Lees-Miller Lawrence F. Povirk 《DNA Repair》2009,8(8):901-911
Although tyrosyl-DNA phosphodiesterase (TDP1) is capable of removing blocked 3′ termini from DNA double-strand break ends, it is uncertain whether this activity plays a role in double-strand break repair. To address this question, affinity-tagged TDP1 was overexpressed in human cells and purified, and its interactions with end joining proteins were assessed. Ku and DNA-PKcs inhibited TDP1-mediated processing of 3′-phosphoglycolate double-strand break termini, and in the absence of ATP, ends sequestered by Ku plus DNA-PKcs were completely refractory to TDP1. Addition of ATP restored TDP1-mediated end processing, presumably due to DNA-PK-catalyzed phosphorylation. Mutations in the 2609–2647 Ser/Thr phosphorylation cluster of DNA-PKcs only modestly affected such processing, suggesting that phosphorylation at other sites was important for rendering DNA ends accessible to TDP1. In human nuclear extracts, about 30% of PG termini were removed within a few hours despite very high concentrations of Ku and DNA-PKcs. Most such removal was blocked by the DNA-PK inhibitor KU-57788, but ~5% of PG termini were removed in the first few minutes of incubation even in extracts preincubated with inhibitor. The results suggest that despite an apparent lack of specific recruitment of TDP1 by DNA-PK, TDP1 can gain access to and can process blocked 3′ termini of double-strand breaks before ends are fully sequestered by DNA-PK, as well as at a later stage after DNA-PK autophosphorylation. Following cell treatment with calicheamicin, which specifically induces double-strand breaks with protruding 3′-PG termini, TDP1-mutant SCAN1 (spinocerebellar ataxia with axonal neuropathy) cells exhibited a much higher incidence of dicentric chromosomes, as well as higher incidence of chromosome breaks and micronuclei, than normal cells. This chromosomal hypersensitivity, as well as a small but reproducible enhancement of calicheamicin cytotoxicity following siRNA-mediated TDP1 knockdown, suggests a role for TDP1 in repair of 3′-PG double-strand breaks in vivo. 相似文献
3.
Although the DNA double-strand break (DSB) is defined as a rupture in the double-stranded DNA molecule that can occur without chemical modification in any of the constituent building blocks, it is recognized that this form is restricted to enzyme-induced DSBs. DSBs generated by physical or chemical agents can include at the break site a spectrum of base alterations (lesions). The nature and number of such chemical alterations define the complexity of the DSB and are considered putative determinants for repair pathway choice and the probability that errors will occur during this processing. As the pathways engaged in DSB processing show distinct and frequently inherent propensities for errors, pathway choice also defines the error-levels cells opt to accept. Here, we present a classification of DSBs on the basis of increasing complexity and discuss how complexity may affect processing, as well as how it may cause lethal or carcinogenic processing errors. By critically analyzing the characteristics of DSB repair pathways, we suggest that all repair pathways can in principle remove lesions clustering at the DSB but are likely to fail when they encounter clusters of DSBs that cause a local form of chromothripsis. In the same framework, we also analyze the rational of DSB repair pathway choice. 相似文献
4.
Upasana Roy Shivam Mukherjee Anjali Sharma Ekaterina G. Frank Orlando D. Sch?rer 《Nucleic acids research》2016,44(15):7281-7291
Several important anti-tumor agents form DNA interstrand crosslinks (ICLs), but their clinical efficiency is counteracted by multiple complex DNA repair pathways. All of these pathways require unhooking of the ICL from one strand of a DNA duplex by nucleases, followed by bypass of the unhooked ICL by translesion synthesis (TLS) polymerases. The structures of the unhooked ICLs remain unknown, yet the position of incisions and processing of the unhooked ICLs significantly influence the efficiency and fidelity of bypass by TLS polymerases. We have synthesized a panel of model unhooked nitrogen mustard ICLs to systematically investigate how the state of an unhooked ICL affects pol η activity. We find that duplex distortion induced by a crosslink plays a crucial role in translesion synthesis, and length of the duplex surrounding an unhooked ICL critically affects polymerase efficiency. We report the synthesis of a putative ICL repair intermediate that mimics the complete processing of an unhooked ICL to a single crosslinked nucleotide, and find that it provides only a minimal obstacle for DNA polymerases. Our results raise the possibility that, depending on the structure and extent of processing of an ICL, its bypass may not absolutely require TLS polymerases. 相似文献
5.
Estabrook NC Chin-Sinex H Borgmann AJ Dhaemers RM Shapiro RH Gilley D Huda N Crooks P Sweeney C Mendonca MS 《Free radical biology & medicine》2011,51(12):2249-2258
We investigated the efficacy and mechanism of dimethylaminoparthenolide (DMAPT), an NF-κB inhibitor, to sensitize human lung cancer cells to X-ray killing in vitro and in vivo. We tested whether DMAPT increased the effectiveness of single and fractionated X-ray treatment through inhibition of NF-κB and/or DNA double-strand break (DSB) repair. Treatment with DMAPT decreased plating efficiency, inhibited constitutive and radiation-induced NF-κB binding activity, and enhanced radiation-induced cell killing by dose modification factors of 1.8 and 1.4 in vitro. X-ray fractionation demonstrated that DMAPT inhibited split-dose recovery/repair, and neutral DNA comet assays confirmed that DMAPT altered the fast and slow components of X-ray-induced DNA DSB repair. Knockdown of the NF-κB family member p65 by siRNA increased radiation sensitivity and completely inhibited split-dose recovery in a manner very similar to DMAPT treatment. The data suggest a link between inhibition of NF-κB and inhibition of DSB repair by DMAPT that leads to enhancement of X-ray-induced cell killing in vitro in non-small-cell lung cancer cells. Studies of A549 tumor xenografts in nude mice demonstrated that DMAPT enhanced X-ray-induced tumor growth delay in vivo. 相似文献
6.
《FEBS letters》2014,588(24):4637-4644
DNA double-strand breaks can be repaired by homologous recombination, during which the DNA ends are long-range resected by helicase–nuclease systems to generate 3′ single strand tails. In archaea, this requires the Mre11–Rad50 complex and the ATP-dependent helicase–nuclease complex HerA–NurA. We report the cryo-EM structure of Sulfolobus solfataricus HerA–NurA at 7.4 Å resolution and present the pseudo-atomic model of the complex. HerA forms an ASCE hexamer that tightly interacts with a NurA dimer, with each NurA protomer binding three adjacent HerA HAS domains. Entry to NurA’s nuclease active sites requires dsDNA to pass through a 23 Å wide channel in the HerA hexamer. The structure suggests that HerA is a dsDNA translocase that feeds DNA into the NurA nuclease sites. 相似文献
7.
It has been a decade since the discovery of human DNA polymerase ι (polι). Since that time, the enzyme has been characterized extensively at the biochemical level, but the cellular function of polι remains enigmatic. Recent studies on polι have, however, provided much needed insights into its biological role(s) and suggest that the enzyme plays important functions in protecting humans from the deleterious consequences of exposure to both oxidative- and ultraviolet light-induced DNA damage. 相似文献
8.
A. N. Khokhlov 《Moscow University Biological Sciences Bulletin》2013,68(4):158-161
The term “cellular/cell senescence” was first introduced by Leonard Hayflick to describe the “age-related” changes in normal eukaryotic cells during aging in vitro, i.e., over the exhaustion of their mitotic potential. In the “classic” variant, it was assumed that cells “grow old” with the help of some internal mechanism, which leads to accumulation of various macromolecular defects (DNA damage in the first place). Currently, as a rule, “cellular senescence” means accumulation/appearance of particular “biomarkers of aging” in cells (they are most often transformed cells that do not demonstrate any replicative senescence) under the influence of various external factors (oxidative stress, H2O2, mitomycin C, ethanol, ionizing radiation, doxorubicin, etc.) that cause DNA damage. This phenomenon has been called DDR (DNA Damage Response). Among the said biomarkers, there are senescence-associated beta-galactosidase activity, expression of p53 and p21 proteins as well as of proteins involved in the regulation of inflammation, such as IL-6 or IL-8, activation of oncogenes, etc. Thus, “aging/senescence” of cells does not occur simply by itself—it takes place because of the influence of DNA-damaging agents. This approach, in my opinion, despite being very important to define a strategy to fight cancer, distracts us, yet again, from the study of the real mechanisms of aging. It should be emphasized that the “stationary phase aging” model developed in my laboratory also allows registering the occurrence of certain biomarkers of aging in cultured cells, but in this case they arise due to the restriction of their proliferation by contact inhibition, i.e., due to a rather physiological impact, which does not cause any damage to cells by itself (the situation is similar to what we observe in a whole multicellular organism). 相似文献
9.
《Cell cycle (Georgetown, Tex.)》2013,12(4):662-669
DNA double-strand breaks (DSBs) represent an important radiation-induced lesion and impaired DSB repair provides the best available correlation with radiosensitivity. Physical techniques for monitoring DSB repair require high, non-physiological doses and cannot reliably detect subtle defects. One outcome from extensive research into the DNA damage response is the observation that H2AX, a variant form of the histone H2A, undergoes extensive phosphorylation at the DSB, creating γH2AX foci that can be visualised by immunofluorescence. There is a close correlation between γH2AX foci and DSB numbers and between the rate of foci loss and DSB repair, providing a sensitive assay to monitor DSB repair in individual cells using physiological doses. However, γH2AX formation can occur at single-stranded DNA regions which arise during replication or repair and thus does not solely correlate with DSB formation. Here, we present and discuss evidence that following exposure to ionising radiation, γH2AX foci analysis can provide a sensitive monitor of DSB formation and repair and describe techniques to optimise the analysis. We discuss the limitations and benefits of the technique, enabling the procedure to be optimally exploited but not misused. 相似文献
10.
Salim Abdisalaam Anthony J. Davis David J. Chen George Alexandrakis 《Nucleic acids research》2014,42(1):e5
A common feature of DNA repair proteins is their mobilization in response to DNA damage. The ability to visualizing and quantifying the kinetics of proteins localizing/dissociating from DNA double strand breaks (DSBs) via immunofluorescence or live cell fluorescence microscopy have been powerful tools in allowing insight into the DNA damage response, but these tools have some limitations. For example, a number of well-established DSB repair factors, in particular those required for non-homologous end joining (NHEJ), do not form discrete foci in response to DSBs induced by ionizing radiation (IR) or radiomimetic drugs, including bleomycin, in living cells. In this report, we show that time-dependent kinetics of the NHEJ factors Ku80 and DNA-dependent protein kinase catalytic subunits (DNA–PKcs) in response to IR and bleomycin can be quantified by Number and Brightness analysis and Raster-scan Image Correlation Spectroscopy. Fluorescent-tagged Ku80 and DNA–PKcs quickly mobilized in response to IR and bleomycin treatments consistent with prior reports using laser-generated DSBs. The response was linearly dependent on IR dose, and blocking NHEJ enhanced immobilization of both Ku80 and DNA–PKcs after DNA damage. These findings support the idea of using Number and Brightness and Raster-scan Image Correlation Spectroscopy as methods to monitor kinetics of DSB repair proteins in living cells under conditions mimicking radiation and chemotherapy treatments. 相似文献
11.
12.
13.
Asagoshi K Lehmann W Braithwaite EK Santana-Santos L Prasad R Freedman JH Van Houten B Wilson SH 《Nucleic acids research》2012,40(2):670-681
The base excision DNA repair (BER) pathway known to occur in Caenorhabditis elegans has not been well characterized. Even less is known about the DNA polymerase (pol) requirement for the gap-filling step during BER. We now report on characterization of in vitro uracil-DNA initiated BER in C. elegans. The results revealed single-nucleotide (SN) gap-filling DNA polymerase activity and complete BER. The gap-filling polymerase activity was not due to a DNA polymerase β (pol β) homolog, or to another X-family polymerase, since computer-based sequence analyses of the C. elegans genome failed to show a match for a pol β-like gene or other X-family polymerases. Activity gel analysis confirmed the absence of pol β in the C. elegans extract. BER gap-filling polymerase activity was partially inhibited by both dideoxynucleotide and aphidicolin. The results are consistent with a combination of both replicative polymerase(s) and lesion bypass/BER polymerase pol θ contributing to the BER gap-filling synthesis. Involvement of pol θ was confirmed in experiments with extract from pol θ null animals. The presence of the SN BER in C. elegans is supported by these results, despite the absence of a pol β-like enzyme or other X-family polymerase. 相似文献
14.
We show here that γ-irradiation leads to the translocation of endogenous Werner syndrome helicase (WRN) from nucleoli to nucleoplasmic
DNA double strand breaks (DSBs), and WRN plays a role in damage repair. The relocation of WRN after irradiation was perturbed
by promyelocytic leukemia protein (PML) knockdown and enhanced by PML IV over-expression. PML IV physically interacted with
WRN after irradiation. Amino acids (a.a.) 394 to 433 of PML were necessary for this interaction and the nucleoplasmic translocation
of WRN and were involved in DSB repair and cellular sensitivity to γ-irradiation. Taken together, our results provide molecular
support for a model in which PML IV physically interacts with and regulates the translocation of WRN for DNA damage repair
through its 394–433 a.a. domain. 相似文献
15.
Jun Yang Jing Yang Zheng-Qin Yin Jing Xu Ning Hu I. Svir Min Wang Yuan-Yi Li Lei Zhan Song Wu Xiao-Lin Zheng 《Biochemistry. Biokhimii?a》2009,74(7):813-818
The binding of human DNA polymerase β (pol β) to DNA template-primer duplex and single-stranded DNA in the absence or presence
of pol β inhibitors has been studied using a surface plasmon resonance biosensor. Two fatty acids, linoleic acid and nervonic
acid, were used as potent pol β inhibitors. In the interaction between pol β and DNA, pol β could bind to ssDNA in a single
binding mode, but bound to DNA template-primer duplexes in a parallel mode. Both pol β inhibitors prevented the binding of
pol β to the single strand overhang and changed the binding from parallel to single mode. The affinities of pol β to the template-primer
duplex region in the presence of nervonic acid or linoleic acid were decreased by 20 and 5 times, respectively. The significant
inhibitory effect of nervonic acid on the pol β-duplex interaction was due to both a 2-fold decrease in the association rate
and a 9-fold increase in the dissociation rate. In the presence of linoleic acid, no significant change of association rate
was observed, and the decrease in binding affinity of pol β to DNA was mainly due to 7-fold increase in the dissociation rate.
Published in Russian in Biokhimiya, 2009, Vol. 74, No. 7, pp. 1000–1006.
These authors contributed equally. 相似文献
16.
Jean-Paul Lasserre Jacqueline Plissonneau Christophe Velours Marc Bonneu Simon Litvak Patricia Laquel Michel Castroviejo 《Biochimie》2013
DNA replication occurs in various compartments of eukaryotic cells such as the nuclei, mitochondria and chloroplasts, the latter of which is used in plants and algae. Replication appears to be simpler in the mitochondria than in the nucleus where multiple DNA polymerases, which are key enzymes for DNA synthesis, have been characterized. In mammals, only one mitochondrial DNA polymerase (pol γ) has been described to date. However, in the mitochondria of the yeast Saccharomyces cerevisiae, we have found and characterized a second DNA polymerase. To identify this enzyme, several biochemical approaches such as proteinase K treatment of sucrose gradient purified mitochondria, analysis of mitoplasts, electron microscopy and the use of mitochondrial and cytoplasmic markers for immunoblotting demonstrated that this second DNA polymerase is neither a nuclear or cytoplasmic contaminant nor a proteolytic product of pol γ. An improved purification procedure and the use of mass spectrometry allowed us to identify this enzyme as DNA polymerase α. Moreover, tagging DNA polymerase α with a fluorescent probe demonstrated that this enzyme is localized both in the nucleus and in the organelles of intact yeast cells. The presence of two replicative DNA polymerases may shed new light on the mtDNA replication process in S. cerevisiae. 相似文献
17.
《Cell cycle (Georgetown, Tex.)》2013,12(24):4300-4310
The DNA damage response (DDR) is a complex signaling network that leads to damage repair while modulating numerous cellular processes. DNA double-strand breaks (DSBs)—a highly cytotoxic DNA lesion—activate this system most vigorously. The DSB response network is orchestrated by the ATM protein kinase, which phosphorylates key players in its various branches. Proteasome-mediated protein degradation plays an important role in the proteome dynamics following DNA damage induction. Here, we identify the nuclear proteasome activator PA28γ (REGγ; PSME3) as a novel DDR player. PA28γ depletion leads to cellular radiomimetic sensitivity and a marked delay in DSB repair. Specifically, PA28γ deficiency abrogates the balance between the two major DSB repair pathways—nonhomologous end-joining and homologous recombination repair. Furthermore, PA28γ is found to be an ATM target, being recruited to the DNA damage sites and required for rapid accumulation of proteasomes at these sites. Our data reveal a novel ATM-PA28γ-proteasome axis of the DDR that is required for timely coordination of DSB repair. 相似文献
18.
Adva Levy-Barda Yaniv Lerenthal Anthony J Davis Young Min Chung Jeroen Essers Zhengping Shao Nicole van Vliet David J Chen Mickey C-T Hu Roland Kanaar Yael Ziv Yosef Shiloh 《Cell cycle (Georgetown, Tex.)》2011,10(24):4300-4310
The DNA damage response (DDR) is a complex signaling network that leads to damage repair while modulating numerous cellular processes. DNA double-strand breaks (DSBs), a highly cytotoxic DNA lesion, activate this system most vigorously. The DSB response network is orchestrated by the ATM protein kinase, which phosphorylates key players in its various branches. Proteasome-mediated protein degradation plays an important role in the proteome dynamics following DNA damage induction. Here, we identify the nuclear proteasome activator PA28γ (REGγ; PSME3) as a novel DDR player. PA28γ depletion leads to cellular radiomimetic sensitivity and a marked delay in DSB repair. Specifically, PA28γ deficiency abrogates the balance between the two major DSB repair pathways—nonhomologous end-joining and homologous recombination repair. Furthermore, PA28γ is found to be an ATM target, being recruited to the DNA damage sites and required for rapid accumulation of proteasomes at these sites. Our data reveal a novel ATM-PA28γ-proteasome axis of the DDR that is required for timely coordination of DSB repair.Key words: genomic stability, DNA repair, double-strand breaks, ATM, proteasome, PA28γ (PSME3) 相似文献
19.
The effect of troxerutin on γ-radiation-induced DNA strand breaks in different tissues of mice in vivo and formations of the micronuclei were studied in human peripheral blood lymphocytes ex vivo and mice blood reticulocytes in vivo. Treatments with 1 mM troxerutin significantly inhibited the micronuclei induction in the human lymphocytes. Troxerutin protected
the human peripheral blood leucocytes from radiation-induced DNA strand breaks in a concentration dependent manner under ex vivo condition of irradiation (2 Gy). Intraperitoneal administration of troxerutin (175 mg/kg body weight) to mice before and
after whole body radiation exposure inhibited micronuclei formation in blood reticulocytes significantly. The administration
of different doses (75, 125 and 175 mg/kg body weight) of troxerutin 1 h prior to 4 Gy γ-radiation exposure showed dose-dependent
decrease in the yield of DNA strand breaks in murine blood leucocytes and bone marrow cells. The dose-dependent protection
was more pronounced in bone marrow cells than in blood leucocytes. Administration of 175 mg/kg body weight of the drug (i.p.)
1 h prior or immediately after whole body irradiation of mice showed that the decrease in strand breaks depended on the post-irradiation
interval at which the analysis was done. The observed time-dependent decrease in the DNA strand breaks could be attributed
to enhanced DNA repair in troxerutin administered animals. Thus in addition to anti-erythrocytic, anti-thrombic, fibrinolytic
and oedema-protective rheological activity, troxerutin offers protection against γ-radiation-induced micronuclei formation
and DNA strand breaks and enhances repair of radiation-induced DNA strand breaks. (Mol Cell Biochem xxx: 57–68, 2005) 相似文献
20.
Terminal deoxynucleotidyl transferase (TdT) contributes to the junctional diversity of immunoglobulin and T-cell receptors
by incorporating nucleotides in a template-independent manner. A closely related enzyme, polymerase μ (polμ), a template-directed
polymerase, plays a role in general end-joining double-strand break repair. We cloned zebrafish TdT and polμ and found them
to be 43% identical in amino acid sequence. Comparisons with sequences of other species revealed conserved residues typical
for TdT in the zebrafish sequence that support the template independence of this enzyme. Some but not all of these features
were identified in zebrafish polμ. In adult fish, TdT expression was most prominent in thymus, pro- and mesonephros, the primary
lymphoid organs in teleost fish and in spleen, intestine, and the tissue around the intestine. Polμ expression was detected
not only in pro- and mesonephros, the major sites for B-lymphocyte development, but also in ovary and testis and in all tissue
preparations to a low extent. TdT expression starts at 4 dpf and increases thereafter. Polμ is expressed at all times to a
similar extent. In situ studies showed a strong expression of TdT and polμ in the thymic cortex of 8-week-old fish. The characterization
of zebrafish TdT and polμ provide new insights in fish lymphopoiesis and addresses the importance and evolution of TdT and
polμ themselves. 相似文献