首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Distribution of iron-containing oxidases in aging nodal rootsof rice and wheat was studied. Activities of cytochrome c oxidase(1.9.3.1 [EC] , cytochrome c : O2 oxidoreductase), catalase (1.11.1.6 [EC] ,H2O2: H2O2 oxidoreductase) and peroxidase (1.11.1.7 [EC] , donor:H2O2 oxidoreductase) in wheat roots were comparatively higherthan were those in rice roots at corresponding stages. Cytochromec oxidase in roots remained active throughout the lives of therice and wheat crops. In rice roots, catalase seemed to playa distinct role around the panicle formation stage. Decay ofcatalase activity took place earlier than did that of peroxidaseand cytochrome c oxidase activities. In wheat roots similarenzyme activity changes were not observed. Data may suggestthat the high activity of iron containing oxidases at the panicleformation stage (I) may be chiefly due to catalase activityin rice roots. 1Paper presented at the 14th Annual Meeting of the Society ofthe Science of Soil and Manure, Japan (1968). (Received November 21, 1968; )  相似文献   

2.
Fumigation of Aleppo pines with episodes of O3 (up to 110 nll) causes immediate depressions of in vivo nitrate reductase(NaR) activities, slightly delayed reductions in the rates ofethene emissions (typical of O3 plants), steady accumulationsof total polyamines (although putrescine declines), and increasesin pool sizes of reduced glutathione (GSH) and ascorbate incurrent year needles. Severe droughting produces smaller plantswith reduced stomatal conductance and CO2 assimilation ratesas well as lower protein contents. Their roots have low ratesof nitrate uptake but virtually no root NaR activities, whilelevels of shoot activities and NaR-associated proteins are unaffectedalthough they have no substrate. Less severe droughting allowsa restricted uptake of nitrate which is still reflected in reducedNaR activities, protein and total N contents, but the additionalpresence of O3 (up to 120 nl l–1) has no interactive effecton N cycling. Drought and O3 together, however, depress CO2assimilation still further, which can not be accounted for byadditional stomatal closure, but the interactive effects ofdrought and air pollution reduce levels of total phenols, GSHand ascorbate which, combined with a 12-fold reduction in glutathionereductase-(GR)-associated proteins, point to an increased susceptibilityof Aleppo pines to photoinhibition as a reason for their currentdecline in Mediterranean areas. Key words: Aleppo pine, ascorbate, ELISA, ethene, glutathione reductase, nitrate reductase  相似文献   

3.
The regulatory actions ofadenosine on ion channel function are mediated by four distinctmembrane receptors. The concentration of adenosine in the vicinity ofthese receptors is controlled, in part, by inwardly directed nucleosidetransport. The purpose of this study was to characterize the effects ofadenosine on ion channels in A549 cells and the role of nucleosidetransporters in this regulation. Ion replacement and pharmacologicalstudies showed that adenosine and an inhibitor of human equilibrative nucleoside transporter (hENT)-1, nitrobenzylthioinosine, activated K+ channels, most likely Ca2+-dependentintermediate-conductance K+ (IK)channels. A1 but not A2 receptor antagonistsblocked the effects of adenosine. RT-PCR studies showed that A549 cellsexpressed mRNA for IK-1 channels as well asA1, A2A, and A2B but notA3 receptors. Similarly, mRNA for equilibrative (hENT1 andhENT2) but not concentrative (hCNT1, hCNT2, and hCNT3) nucleosidetransporters was detected, a result confirmed in functional uptakestudies. These studies showed that adenosine controls the function ofK+ channels in A549 cells and that hENTs play a crucialrole in this process.

  相似文献   

4.
Chlorophyll a and carotenoids of spinach began to be destroyed2 to 3 hr after fumigation with 2 ppm SO2 under light, whereaschlorophyll b was undamaged during 8 hr of exposure to SO2.Pheophytin a was not affected by the fumigation. When disks excised from leaves fumigated with SO2 at 2 ppm for2 hr were illuminated, chlorophyll a and carotenoids were brokendown, while they were not destroyed in darkness. The destructionof these pigments was suppressed under nitrogen. Chlorophylla destruction was inhibited by l,2-dihydroxybenzene-3,5-disulfonate(tiron), hydro-quinone and ascorbate, but not by l,4-diazabicyclo-[2,2,2]-octane(DABCO), methio-nine, histidine, benzoate and formate. Chlorophylla destruction was inhibited by phenazine methosulfate but stimulatedby methyl viologen. Addition of superoxide dismutase (SOD) tothe homogenate of SO2-fumigated leaves inhibited the chlorophylla destruction. The activity of endogenous SOD was reduced to40% by 2-hr fumigation before the loss of chlorophyll was observed.These results suggest that chlorophyll a destruction by SO2was due to superoxide radicals (O2). Moreover, malondialdehyde (MDA), a product of lipid peroxidation,was formed in SO2-fumigated leaves. MDA formation was inhibitedby tiron, hydroquinone and DABCO but not by benzoate and formate.MDA formation was increased by D2O. These results suggest thatlipid peroxidation in SO2-fumigated leaves was due to singletoxygen 1O2 produced from O2. (Received May 15, 1980; )  相似文献   

5.
Chlorophyll a and carotenoids of spinach began to be destroyed2 to 3 hr after fumigation with 2 ppm SO2 under light, whereaschlorophyll b was undamaged during 8 hr of exposure to SO2.Pheophytin a was not affected by the fumigation. When disks excised from leaves fumigated with SO2 at 2 ppm for2 hr were illuminated, chlorophyll a and carotenoids were brokendown, while they were not destroyed in darkness. The destructionof these pigments was suppressed under nitrogen. Chlorophylla destruction was inhibited by l,2-dihydroxybenzene-3,5-disulfonate(tiron), hydro-quinone and ascorbate, but not by l,4-diazabicyclo-[2,2,2]-octane(DABCO), methio-nine, histidine, benzoate and formate. Chlorophylla destruction was inhibited by phenazine methosulfate but stimulatedby methyl viologen. Addition of superoxide dismutase (SOD) tothe homogenate of SO2-fumigated leaves inhibited the chlorophylla destruction. The activity of endogenous SOD was reduced to40% by 2-hr fumigation before the loss of chlorophyll was observed.These results suggest that chlorophyll a destruction by SO2was due to superoxide radicals (O2). Moreover, malondialdehyde (MDA), a product of lipid peroxidation,was formed in SO2-fumigated leaves. MDA formation was inhibitedby tiron, hydroquinone and DABCO but not by benzoate and formate.MDA formation was increased by D2O. These results suggest thatlipid peroxidation in SO2-fumigated leaves was due to singletoxygen 1O2 produced from O2. (Received May 15, 1980; )  相似文献   

6.
The electon transport systems of Rhizobium japonicum were studied,comparing cells harvested from effective nodules with thosefrom artificial culture. Participation of the cytochrome systemwas confirmed in both forms of cells. Absorption peaks of thecytochromes of cultured cells were a, b, c type, resemblingthose of Bacillus subtilis, yeast and mammalian tissue. Cytochromea could not be detected in the absorption spectrum of symbioticcells, although the CO binding difference spectrum showed apeak at about 438 mµ, which can be attributed to a componenta3 or a1. CO difference spectrum also showed a shoulder at about416 mµ. Cells cultivated under the insufficient supply of oxygen showedthe cytochrome absorption spectrum closely resembled that ofsymbiotic cells. Diaphorase activity was lower in symbioticcells. These results are considered to be due to the insufficientsupply of oxygen within nodule tissue. Succinate oxidation bythe symbiotic cell paniculate was shown to be carbon monooxideresistant. NADH2 oxidation by the supernatant fraction of symbioticcells was accelerated by flavin mononucleotide, 2, 6-dichiorophenolindophenol, methylene blue and vitamin K3. 1Present address: Faculty of Agriculture, Tôhoku University,Sendai. 2Present address: Central Agricultural Experiment Station, Kitamoto.  相似文献   

7.
Previous work from this laboratorydemonstrated that arachidonic acid activates c-junNH2-terminal kinase (JNK) through oxidative intermediatesin a Ca2+-independent manner (Cui X and Douglas JG.Arachidonic acid activates c-jun N-terminal kinase throughNADPH oxidase in rabbit proximal tubular epithelial cells. ProcNatl Acad Sci USA 94: 3771-3776, 1997.). We now report thatJNK can also be activated via a Ca2+-dependent mechanism byagents that increase the cytosolic Ca2+ concentration(Ca2+ ionophore A23187, Ca2+-ATPaseinhibitor thapsigargin) or deplete intracellular Ca2+stores [intracellular Ca2+ chelator1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid(BAPTA)-AM]. The activation of JNK by BAPTA-AM occurs despite adecrease in cytosolic Ca2+ concentration as detected by theindicator dye fura 2, but appears to be related to Ca2+metabolism, because modification of BAPTA with two methyl groups increases not only the chelation affinity for Ca2+, butalso the potency for JNK activation. BAPTA-AM stimulates Ca2+ influx across the plasma membrane, and the resultinglocal Ca2+ increases are probably involved in activation ofJNK because Ca2+ influx inhibitors (SKF-96365, nifedipine)and lowering of the free extracellular Ca2+ concentrationwith EGTA reduce the BAPTA-induced JNK activation.

  相似文献   

8.
Light-induced redox-reactions of cytochrome b559 in spinachchloroplasts were investigated. Illumination of chloroplastsinduced photoreduction of cytochrorne b559 Red light (650 nm)was more effective than far-red light (725 nm), indicating thatthe photoreduction is a photosystem II-mediated reaction. Onaddition of DCMU, the photoreduction was eliminated and a photooxidationof cytochrome b559 was observed. The rate of this photooxidationwas faster with photosystem II light than with photo-systemI light. On addition of Mn++ the photooxidation was partly suppressed;far-red light became as effective as red light in inducing photooxidationof cytochrome b599, in the presence of DCMU and Mn++. Ascorbate completely suppressed photooxidation of cytochromeb559 In the presence of ascorbate, however, photooxidation wasobserved in the presence of inhibitors or after inhibitory treatmentsof chloroplasts which affected the oxidizing side of systemII. These inhibitors and inhibitory treatments, but not DCMU,decreased the redoxpotential of cytochrome b559. Reactivationof Hill reaction in Tris-washed chloroplasts by indophenol-ascorbatetreatment was not accompanied by an abolishment of photooxidationof cytochrome b559. A possible mechanism is proposed to account for these reactionsof cytochrome b559 in the photosynthetic electron transportin chloroplasts. (Received April 4, 1972; )  相似文献   

9.
Although the importance of estradiol-17 (E2) in many physiological processes has been reported, to date no researchers have investigated the effects of E2 on embryonic stem (ES) cell proliferation. Therefore, in the present study, we have examined the effect of E2 on the DNA synthesis of murine ES (ES-E14TG2a) cells and its related signaling pathways. The results of this study show that E2 (10–9 M) significantly increased [3H]thymidine incorporation at >4 h and that E2 (>10–12 M) induced an increase of [3H]thymidine incorporation after 8-h incubation. Moreover, E2 (>10–12 M) also increased 5'-bromo-2'-deoxyuridine (BrdU) incorporation and cell number. Indeed, E2 stimulated estrogen receptor (ER)- and - protein levels and increased mRNA expression levels of protooncogenes (c-fos, c-jun, and c-myc). Tamoxifen (antiestrogen) completely inhibited E2-induced increases in [3H]thymidine incorporation. In addition, estradiol-6-O-carboxymethyl oxime-BSA (E2-BSA; 10–9 M) increased [3H]thymidine incorporation at >1 h, and E2-BSA (>10–12 M) increased [3H]thymidine incorporation after 1-h incubation. E2-BSA-induced increase in BrdU incorporation also occurred in a dose-dependent manner. Tamoxifen had no effect on E2-BSA-induced increase of [3H]thymidine incorporation. Also, E2 and E2-BSA displayed maximal phosphorylation of p44/42 MAPKs at 10 and 5 min, respectively. E2 increased cyclins D1 and E as well as cyclin-dependent kinase (CDK)2 and CDK4. In contrast, E2 decreased the levels of p21cip1 and p27kip1 (CDK-inhibitory proteins). Increases of these cell cycle regulators were blocked by 10–5 M PD-98059 (MEK inhibitor). Moreover, E2-induced increase of [3H]thymidine incorporation was inhibited by PD-98059 or butyrolactone I (CDK2 inhibitor). In conclusion, estradiol-17 stimulates the proliferation of murine ES cells, and this action is mediated by MAPKs, CDKs, or protooncogenes. cyclin-dependent kinase; mitogen-activated protein kinase  相似文献   

10.
We studied the course of early leaf area expansion and specificleaf area (SLA) in potato (Solanum tuberosum L.) and wheat (Triticumaestivum L.) genotypes and tested whether air temperature explainsdifferences in these courses within different environments.Such knowledge can be used to improve crop growth modelling.The relative rate of leaf area expansion (RL) of potato andwheat decreased with thermal time, but was nearly linear upto a leaf area index (L) of 1.0. TheRL (L < 1; mean: 17.9x 10-3°C-1 d-1) of potato showed an interaction betweengenotype and environment, and varied with year. TheRL (L <1; mean: 7.1 x 10-3°C-1 d-1) of winter wheat was lower thanthat of spring wheat (mean: 10.9 x 10-3°C-1 d-1), and bothvaried with year. SLAof potato increased nearly linearly withthermal time from 5 to 15 m2 kg-1at 50% emergence, to 20 to25 m2 kg-1at 155°Cd, and then decreased slightly. The SLAofboth winter and spring wheat began at 16 to 23 m2 kg-1and inmost cases increased slightly with thermal time. In potato,regression parameters of SLAwith thermal time were affectedby environment (management conditions and year) and genotype;in wheat they were affected by environment (year and site).Treatment effects on RLof potato were not correlated with thoseon SLA , and were only partly correlated for wheat. Thereforewe conclude that the early foliar expansion of potato is associatedwith a strong increase in SLA , and not so for wheat. For bothcrops the course of early leaf area expansion and ofSLA withair temperature is not robust over environments and genotypes.The consequences of these results for modelling are discussed.Copyright 2000 Annals of Botany Company Triticum aestivum, spring wheat, winter wheat, Solanum tuberosum, leaf area expansion, specific leaf area, early growth, genotype, environment, modelling  相似文献   

11.
Net photosynthetic rates per unit ground area for plant standsof Solanum melongena L. var. esculentum (aubergine) and Amaranthuscaudatus L. var. edulis (grain amaranth) were measured over10 min intervals in an airtight, glass, controlled-environmentcabinet for a range of light flux densities provided by thediurnal variation in daylight. Light response curves for photosynthesisof stands, grown at ambient CO2 concentration, were definedat 400, 800 and 1200 vpm CO2. Light compensation points for these stands were around 20-30J m-2 s-1 and decreased slightly at higher CO2 concentrations.For aubergine, a C3 species, the short-term effects of CO2 enrichmentwere to increase the initial slope as well as the asymptoteof the light response curve, reducing light saturation at moderateto high light flux densities; but for amaranthus, a C4 species,saturation was less apparent and CO2 enrichment scarcely increasedphotosynthesis except at light flux densities above 150 J m-2s-1. The canopies intercepted 93-98% of incident light. The efficiencyof utilization of intercepted light in photosynthesis (µgCO2 J-1) increased from zero at the light compensation pointto a maximum at an optimum light flux density of about 100 Jm-2 s-1 (the optimum rose a little with CO2 enrichment) anddecreased slightly with further increase in light. Maximum utilizationefficiencies at 400 vpm CO2 were 8-9 µg CO2 J-1. Enrichmentto 1200 vpm did not affect the peak utilization efficiency ofthe C4 amaranthus, but increased that aubergine to 12·2µg CO2 J-1 (equivalent to some 14% when using the heatof combustion of plant dry matter to convert to the dimensionlessform). This is among the highest recorded efficiencies of lightutilization for stands, and relates to the exceptionally favourableenvironment, with optimal control of CO2 concentration, humidity,temperature, water supply and mineral nutrition.Copyright 1993,1999 Academic Press Amaranthus caudatus L. var. edulis, Solanum melongena L. var. esculentum, canopy photosynthesis, CO2 enrichment, light interception, light utilization, photosynthetic efficiency  相似文献   

12.
A method for isolating an f-type cytochrome (Chlorella cytochrome554) from Chlorella vulgaris var. viridis (CHODAT) utilizingN, N-diethylaminoethylcellulose is described. The spectrum ofreduced Chlorella cyt. 554 has absorption maxima at 554 (-band), 524 (ß-band), 417 (SORETband), 352 , 319 and 277 (proteinband). The oxidized form has absorption maxima at 554530 , (ß-band), 412 (SORET band),360 322 and 275 (protein band). Thespectral characteristics resembled other f-type cytochromes,e. g. in the high SORET to -extinction ratio (6.8) and an asymmetric-absorption band (especially at liquid N2 temperature) ; butcharacteristic differences were present. Mitochondria from whitelupine seedlings and sweet potato roots reduced Chlorella cyt.554. From the effects of antimycin A and 2-heptyl-4-hydroxyquinolineN-oxide it appears that Chlorella cyt. 554 was reduced sequentiallybefore cytochrome a+a3 and near the level of the cytochromesof the b type. Oxidation was slow using lupine mitochondriaand nil with sweet potato mitochondria. The oxidation-reductionpotential at pH 7.2 and 30? was 0.35 V. Ascorbate, cysteine,glutathione and Na2S2O4 readily reduced Chlorella cyt. 554.The cytochrome was not autoxidizable and was slowly oxidizedby excess potassium ferricyanide. The reduced form did not reactwith CO and was not adsorbed by IRC-50 or Cellex-P cation exchangers. 1 Temporary address until September 1961: Department of HorticulturalScience, University of California, Los Angeles 24, California,U. S. A. 2 Present address: Plant Industry Station, Pioneering ResearchLaboratory, Marketing Quality Research Division, AgriculturalMarketing Service, Beltsville, Maryland, U. S. A. (Received January 16, 1961; )  相似文献   

13.
In chloroplasts O2 is photoproduced via the univalentreduction of O2 in PSI even under conditions that are favorablefor photosynthesis. The photogenerated O2 is disproportionatedto H2O2 and O2 in a reaction that is catalyzed by superoxidedismutase (SOD). The H2O2-scavenging ascorbate peroxidase isbound to the thylakoid membranes at or near the PSI reactioncenter [Miyake and Asada (1992) Plant Cell Physiol. 33: 541],and the primary product of oxidation in the peroxidase-catalyzedreaction, the monodehydroascorbate radical, is photoreducedto ascorbate in PSI in a reaction mediated by ferredoxin [Miyakeand Asada (1994) Plant Cell Physiol. 35: 539]. Therefore, SODshould be localized at or near the PSI complex. We report herethe microcompartmentalization of the chloroplastic CuZn-SODon the stromal-faces of thylakoid membranes where the PSI-complexis located. Spinach leaves were fixed and substituted by a rapidfreezing and substitution method that allows visualization ofintact chloroplasts. The embedded sections were immuno labeledwith the antibody against CuZn-SOD by the immunogold method.About 70% of the immunogold particles were found within 5 nmfrom the surface of the stromal-faces of thylakoid membranes.Of these particles, about 40% were found at the ends and marginsof the grana thylakoids and 60% were found on the stromal sideof the stromal thylakoids. From these results, the local concentrationof CuZn-SOD on the stroma-facing surfaces of the thylakoid membraneswas estimated to be about 1 mM. The effect of the microcompartmentalizationof CuZn-SOD on the scavenging of superoxide radicals is discussed. (Received November 25, 1994; Accepted February 23, 1995)  相似文献   

14.
This study examines whether fluid pressure (FP) modulates the L-type Ca2+ channel in cardiomyocytes and investigates the underlying cellular mechanism(s) involved. A flow of pressurized (16 dyn/cm2) fluid, identical to that bathing the myocytes, was applied onto single rat ventricular myocytes using a microperfusion method. The Ca2+ current (ICa) and cytosolic Ca2+ signals were measured using a whole cell patch-clamp and confocal imaging, respectively. It was found that the FP reversibly suppressed ICa (by 25%) without altering the current-voltage relationships, and it accelerated the inactivation of ICa. The level of ICa suppression by FP depended on the level and duration of pressure. The Ba2+ current through the Ca2+ channel was only slightly decreased by the FP (5%), suggesting an indirect inhibition of the Ca2+ channel during FP stimulation. The cytosolic Ca2+ transients and the basal Ca2+ in field-stimulated ventricular myocytes were significantly increased by the FP. The effects of the FP on the ICa and on the Ca2+ transient were resistant to the stretch-activated channel inhibitors, GsMTx-4 and streptomycin. Dialysis of myocytes with high concentrations of BAPTA, the Ca2+ buffer, eliminated the FP-induced acceleration of ICa inactivation and reduced the inhibitory effect of the FP on ICa by 80%. Ryanodine and thapsigargin, abolishing sarcoplasmic reticulum Ca2+ release, eliminated the accelerating effect of FP on the ICa inactivation, and they reduced the inhibitory effect of FP on the ICa. These results suggest that the fluid pressure indirectly suppresses the Ca2+ channel by enhancing the Ca2+-induced intracellular Ca2+ release in rat ventricular myocytes. L-type Ca2+ current; fluid pressure; ventricular myocytes; cytosolic Ca2+ transient  相似文献   

15.
The Uptake of Gaseous Ammonia by the Leaves of Italian Ryegrass   总被引:5,自引:0,他引:5  
Lockyer, D. R. and Whitehead, D. C. 1986. The uptake of gaseousammonia by the leaves of Italian ryegrass.—J. exp. Bot.37: 919–927. Plants of Italian ryegrass (Lolium multiflorum Lam.) grown insoil with two rates of added 15N-labelled nitrate were exposed,in chambers, for 40 d to NH3 in the air at concentrations of16, 118 and 520 µg m–3. At the highest concentrationof NH3, this source provided 47?3% of the total nitrogen inplants grown with the lower rate of nitrate addition (100mgN kg–1 dry soil) and 35?2% with the higher rate (200mgN kg–1 dry soil) At the intermediate concentration ofNH3, the contributions to total plant N were 19?6% and 10?8%,respectively, at low and high nitrate while, at the lowest concentrationof NH3, they were 5?1% and 32%. Most of the N derived from theNH3 remained in the leaves, but some was transported to theroots. The amount of N derived from the NH3 that was presentin the leaves was not reduced by washing the leaves in waterat pH 5?0 before harvesting, indicating that the N was assimilatedby the plant and not adsorbed superficially. Rates of uptakeof NH3 per unit leaf area ranged from 1?7 µg dm–2h–1 at a concentration of 16 µg m–3 to 29?0µg dm–2 h–1 at a concentration of 520 µgm–3 and with the lower rate of nitrate addition. Increasingthe supply of nitrate to the roots slightly reduced the rateof uptake of NH3 per unit leaf area. Uptake of N from the higherrate of nitrate was reduced at the highest concentration ofNH3 in the air. Key words: Ammonia, nitrogen, leaf sorption, Lolium multiflorum  相似文献   

16.
In cardiac-specific Na+-Ca2+ exchanger (NCX) knockout (KO) mice, the ventricular action potential (AP) is shortened. The shortening of the AP, as well as a decrease of the L-type Ca2+ current (ICa), provides a critical mechanism for the maintenance of Ca2+ homeostasis and contractility in the absence of NCX (Pott C, Philipson KD, Goldhaber JI. Excitation-contraction coupling in Na+-Ca2+ exchanger knockout mice: reduced transsarcolemmal Ca2+ flux. Circ Res 97: 1288–1295, 2005). To investigate the mechanism that underlies the accelerated AP repolarization, we recorded the transient outward current (Ito) in patch-clamped myocytes isolated from wild-type (WT) and NCX KO mice. Peak Ito was increased by 78% and decay kinetics were slowed in KO vs. WT. Consistent with increased Ito, ECGs from KO mice exhibited shortened QT intervals. Expression of the Ito-generating K+ channel subunit Kv4.2 and the K+ channel interacting protein was increased in KO. We used a computer model of the murine AP (Bondarenko VE, Szigeti GP, Bett GC, Kim SJ, and Rasmusson RL. Computer model of action potential of mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 287: 1378–1403, 2004) to determine the relative contributions of increased Ito, reduced ICa, and reduced NCX current (INCX) on the shape and kinetics of the AP. Reduction of ICa and elimination of INCX had relatively small effects on the duration of the AP in the computer model. In contrast, AP repolarization was substantially accelerated when Ito was increased in the computer model. Thus, the increase in Ito, and not the reduction of ICa or INCX, is likely to be the major mechanism of AP shortening in KO myocytes. The upregulation of Ito may comprise an important regulatory mechanism to limit Ca2+ influx via a reduction of AP duration, thus preventing Ca2+ overload in situations of reduced myocyte Ca2+ extrusion capacity. genetically altered mice; cardiac myocytes; short QT interval; transient outward current  相似文献   

17.
The processes of NO3 uptake and transport and the effectsof NH4+ or L-glutamate on these processes were investigatedwith excised non-mycorrhizal beech (Fagus sylvatica L.) roots.NO3 net uptake followed uniphasic Michaelis-Menten kineticsin a concentration range of 10µM to 1 mM with an apparentKm of 9.2 µM and a Vmax of 366 nmol g–1 FW h–1.NH4+, when present in excess to NO3, or 10 mM L-glutamateinhibited the net uptake of NO3 Apparently, part of NO3taken up was loaded into the xylem. Relative xylem loading ofNO3 ranged from 3.21.6 to 6.45.1% of NO3 netuptake. It was not affected by treatment with NH4+ or L-glutamate.16N/13N double labelling experiments showed that NO3efflux from roots increased with increasing influx of NO3and, therefore, declined if influx was reduced by NH4+ or L-glutamateexposure. From these results it is concluded that NO3net uptake by non-mycorrhizal beech roots is reduced by NH4+or L-glutamate at the level of influx and not at the level ofefflux. Key words: Nitrate transport, net uptake, influx, efflux, ammonium, Fagus, Fagaceae  相似文献   

18.
Three artificial electron acceptors of different Eo and charge,hexacyanoferrate (III) (K3Fe(CN)6), hexachloroiridate (IV) (K2IrCl6),and hexabromoiridate (IV) (K2IrBr6), were compared with respectto their rate of reduction by roots of Zea mays L., the concomitantproton secretion, and to the effect on plasmalemma depolarization. It has been shown that these plasma membrane impermeable electronacceptors were reduced by a plasmalemma reductase activity.At low concentrations proton secretion was slightly inhibited,at higher concentrations, however, the rate of proton secretionwas stimulated. The root cell plasmalemma showed a transientdepolarization after addition of all three electron acceptors.The depolarization was concentration-dependent for the iridatecomplexes but not for hexacyanoferrate (III). For both iridatecomplexes maximum depolarization was reached at 50 µmoldm–3. A hypothetical model as an explanation of the redox dependentproton secretion will be given. Key words: Hexachloroiridate (IV), hexabromoiridate (IV), hexacyanoferrate (III), plasmalemma redox, membrane potential, Zea mays  相似文献   

19.
We have studied the inactivation of the water-oxidizing complexby exogenous, ‘general’ reductants in various typesof PS II membrane. Extraction of the 33, 23 and 17 kDa proteinsfrom PS II membranes rendered the functional Mn susceptibleto rapid solubilization by reductants such as hydroquinone,benzidine and ascorbate, while water analogs, such as NH2OH,inactivated the complex regardless of the presence of PS IIextrinsic proteins. The extent of the inactivation was dependenton the hydrophobicity of the reductants examined. Diphenylcarbazide,an efficient electron donor to Z+ and D+, did not inactivatethe Mn complex. As reported earlier [Ghanotakis et al. (1984)Biochim. Biophys. Acta 767: 524], weak illumination deceleratedthe inactivation of the complex by the various reductants. Kineticanalyses of the flash-induced protection provided evidence aboutthe nature of the light state that was not susceptible to thereductants. This state was generated and decayed with half timesof approximately 0.5 and 9 s, respectively. However, such lightprotection was diminished under Cl-depleted conditions,at slightly alkaline pH, or when ascorbate was employed as areductant. Furthermore, we observed that the oxidation of N,N,N',N'-tetramethyl-p-phenylenediamine,which reacts with the Mn complex, was accomplished as a biphasicreaction. The amount of the fast phase, which was almost eliminatedafter the reconstitution of the 33 kDa protein and Ca2+, wasapproximately 7 electron equivalents per 200 Chl. From theseresults, it is likely that the bulky, ‘general’reductants reduce the functional Mn directly by solubilizingMn from the complex in the same way as do the water analogs.The effectiveness of these reductants in the photoactivationof the apo-water-oxidizing complex is also discussed. (Received September 13, 1989; Accepted March 12, 1990)  相似文献   

20.
Osteoblasts subjected to fluid shearincrease the expression of the early response gene, c-fos, andthe inducible isoform of cyclooxygenase, COX-2, two proteins linked tothe anabolic response of bone to mechanical stimulation, in vivo. Theseincreases in gene expression are dependent on shear-induced actinstress fiber formation. Here, we demonstrate that MC3T3-E1osteoblast-like cells respond to shear with a rapid increase inintracellular Ca2+ concentration([Ca2+]i) that wepostulate is important to subsequent cellular responses to shear. Totest this hypothesis, MC3T3-E1 cells were grown on glass slides coatedwith fibronectin and subjected to laminar fluid flow (12 dyn/cm2). Before application of shear, cells were treatedwith two Ca2+ channel inhibitors or various blockers ofintracellular Ca2+ release for 0.5-1 h. Althoughgadolinium, a mechanosensitive channel blocker, significantly reducedthe [Ca2+]i response, neithergadolinium nor nifedipine, an L-type channel Ca2+ channelblocker, were able to block shear-induced stress fiber formation andincrease in c-fos and COX-2 in MC3T3-E1 cells. However, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraaceticacid-AM, an intracellular Ca2+ chelator, or thapsigargin,which empties intracellular Ca2+ stores, completelyinhibited stress fiber formation and c-fos/COX-2 production in shearedosteoblasts. Neomycin or U-73122 inhibition of phospholipase C, whichmediates D-myo-inositol 1,4,5-trisphosphate (IP3)-induced intracellular Ca2+ release, alsocompletely suppressed actin reorganization and c-fos/COX-2 production.Pretreatment of MC3T3-E1 cells with U-73343, the inactive isoform ofU-73122, did not inhibit these shear-induced responses. These resultssuggest that IP3-mediated intracellular Ca2+release is required for modulating flow-induced responses in MC3T3-E1 cells.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号