首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
U. Ryser  P. J. Holloway 《Planta》1985,163(2):151-163
Electron-microscopic examination in conjunction with extraction procedures and chemical analysis have confirmed that a suberin-like lipid biopolymer is located within the concentric polylamellate layers found in the secondary cell walls of green cotton fibres (Gossypium hirsutum cv. green lint). A polymer of similar ultrastructure and chemical constitution also occurs mainly in the secondary seed-coat walls of the outer epidermis of both green and white varieties of G. hirsutum. The suberins composed of predominantly C22 compounds are, however, markedly different from those present in the periderms of the same plants; these comprise mainly C16 and C18 compounds. Long-chain 1-alkanols (C26–C36) and alkanoic acids (C16–C36) are the principal components of the wax from white fibres but these lipid classes comprise a much smaller proportion of that from green fibres. unidentified highmolecular-weight compounds were the major constituents of the green-fibre was extract which also contains a number of yellow-green pigments, probably flavonoid in nature. These pigments are thought to be associated with the ultrahistochemical reaction with silver proteinate that was observed only in the green-fibre cell walls. A total of 16 wild and cultivated cotton species were examined with the electron microscope for the presence of suberin. The outer seed-coat epidermis of all the examined species but only the fibres of the wild ones were found to be suberized. Among the analysed mutants of fibre colour in G. hirsutum only the gene Lg (green lint) seemed to be associated with suberin.Abbreviations GLC gas-liquid chromatography - TLC thinlayer chromatography Fibres=fibre cells of the seed coat epidermis without fibre base; Seed coast=include the base of fibre cells, and short, so-called fuzz fibres  相似文献   

2.
Ruan YL  Xu SM  White R  Furbank RT 《Plant physiology》2004,136(4):4104-4113
Cotton fibers are single-celled hairs that elongate to several centimeters long from the seed coat epidermis of the tetraploid species (Gossypium hirsutum and Gossypium barbadense). Thus, cotton fiber is a unique system to study the mechanisms of rapid cell expansion. Previous work has shown a transient closure of plasmodesmata during fiber elongation (Y.-L. Ruan, D.J. Llewellyn, R.T. Furbank [2001] Plant Cell 13: 47-60). To examine the importance of this closure in fiber elongation, we compared the duration of the plasmodesmata closure among different cotton genotypes differing in fiber length. Confocal imaging of the membrane-impermeant fluorescent molecule carboxyfluorescein revealed a genotypic difference in the duration of the plasmodesmata closure that positively correlates with fiber length among three tetraploid genotypes and two diploid progenitors. In all cases, the closure occurred at the rapid phase of elongation. Aniline blue staining and immunolocalization studies showed that callose deposition and degradation at the fiber base correlates with the timing of plasmodesmata closure and reopening, respectively. Northern analyses showed that the expression of a fiber-specific beta-1,3-glucanase gene, GhGluc1, was undetectable when callose was deposited at the fiber base but became evident at the time of callose degradation. Genotypically, the level of GhGluc1 expression was high in the short fiber genotype and weak in the intermediate and long fiber genotypes. The data provide genotypic and developmental evidence that (1) plasmodesmata closure appears to play an important role in elongating cotton fibers, (2) callose deposition and degradation may be involved in the plasmodesmata closure and reopening, respectively, and (3) the expression of GhGluc1 could play a role in this process by degrading callose, thus opening the plasmodesmata.  相似文献   

3.
Gene expression changes and early events in cotton fibre development   总被引:7,自引:0,他引:7  
Lee JJ  Woodward AW  Chen ZJ 《Annals of botany》2007,100(7):1391-1401
  相似文献   

4.
5.
Cotton is the most important textile crop as a result of its long cellulose-enriched mature fibers. These single-celled hairs initiate at anthesis from the ovule epidermis. To date, genes proven to be critical for fiber development have not been identified. Here, we examined the role of the sucrose synthase gene (Sus) in cotton fiber and seed by transforming cotton with Sus suppression constructs. We focused our analysis on 0 to 3 days after anthesis (DAA) for early fiber development and 25 DAA, when the fiber and seed are maximal in size. Suppression of Sus activity by 70% or more in the ovule epidermis led to a fiberless phenotype. The fiber initials in those ovules were fewer and shrunken or collapsed. The level of Sus suppression correlated strongly with the degree of inhibition of fiber initiation and elongation, probably as a result of the reduction of hexoses. By 25 DAA, a portion of the seeds in the fruit showed Sus suppression only in the seed coat fibers and transfer cells but not in the endosperm and embryo. These transgenic seeds were identical to wild-type seeds except for much reduced fiber growth. However, the remaining seeds in the fruit showed Sus suppression both in the seed coat and in the endosperm and embryo. These seeds were shrunken with loss of the transfer cells and were <5% of wild-type seed weight. These results demonstrate that Sus plays a rate-limiting role in the initiation and elongation of the single-celled fibers. These analyses also show that suppression of Sus only in the maternal seed tissue represses fiber development without affecting embryo development and seed size. Additional suppression in the endosperm and embryo inhibits their own development, which blocks the formation of adjacent seed coat transfer cells and arrests seed development entirely.  相似文献   

6.
Each cotton fiber is a single cell that elongates to 2.5 to 3.0 cm from the seed coat epidermis within approximately 16 days after anthesis (DAA). To elucidate the mechanisms controlling this rapid elongation, we studied the gating of fiber plasmodesmata and the expression of the cell wall-loosening gene expansin and plasma membrane transporters for sucrose and K(+), the major osmotic solutes imported into fibers. Confocal imaging of the membrane-impermeant fluorescent solute carboxyfluorescein (CF) revealed that the fiber plasmodesmata were initially permeable to CF (0 to 9 DAA), but closed at approximately 10 DAA and re-opened at 16 DAA. A developmental switch from simple to branched plasmodesmata was also observed in fibers at 10 DAA. Coincident with the transient closure of the plasmodesmata, the sucrose and K(+) transporter genes were expressed maximally in fibers at 10 DAA with sucrose transporter proteins predominately localized at the fiber base. Consequently, fiber osmotic and turgor potentials were elevated, driving the rapid phase of elongation. The level of expansin mRNA, however, was high at the early phase of elongation (6 to 8 DAA) and decreased rapidly afterwards. The fiber turgor was similar to the underlying seed coat cells at 6 to 10 DAA and after 16 DAA. These results suggest that fiber elongation is initially achieved largely by cell wall loosening and finally terminated by increased wall rigidity and loss of higher turgor. To our knowledge, this study provides an unprecedented demonstration that the gating of plasmodesmata in a given cell is developmentally reversible and is coordinated with the expression of solute transporters and the cell wall-loosening gene. This integration of plasmodesmatal gating and gene expression appears to control fiber cell elongation.  相似文献   

7.
8.
9.
10.
11.
Cotton fibres, the single‐celled trichomes derived from the ovule epidermis, provide the most important natural material for the global textile industry. A number of studies have demonstrated that regulating endogenous hormone levels through transgenic approaches can improve cotton fibre qualities. Phytosulfokine‐α (PSK‐α) is a novel peptide hormone in plants that is involved in regulating cell proliferation and elongation. However, its potential applications in crop genetic improvement have not been evaluated. In this study, we describe how exogenous PSK‐α application promotes cotton fibre cell elongation in vitro. Chlorate, an effective inhibitor of peptide sulfation, suppressed fibre elongation in ovule culture. Exogenously applied PSK‐α partly restored the chlorate‐induced suppression. A putative PSK gene (GhPSK) was cloned from Gossypium hirsutum. Expression pattern analysis revealed that GhPSK is preferentially expressed in rapidly elongating fibre cells (5–20 days postanthesis). Overexpression of GhPSK in cotton increased the endogenous PSK‐α level and promoted cotton fibre cell elongation, resulting in longer and finer fibres. Further results from electrophysiological and physiological analyses suggest that GhPSK affects fibre development through regulation of K+ efflux. Digital gene expression (DGE) profile analysis of GhPSK overexpression lines indicates that PSK signalling may regulate the respiratory electron‐transport chain and reactive oxygen species to affect cotton fibre development. These results imply that peptide hormones are involved in cotton fibre growth and suggest a new strategy for the biotechnological improvement of cotton fibre quality.  相似文献   

12.
VON TEICHMAN, I., 1988. The development and structure of the seed-coat of Lannea discolor (Sonder) Engl. (Anacardiaceae). The bitegmic, anatropous ovule contains a group of nucellar cells with slightly thickened and intensively staining cell walls. Besides this hypostase sensu stricto, the nucellus cells in the chalaza become tanniniferous. This tanniniferous chalazal-nucellar tissue is intially plate-like. It is referred to as the hypostase sensu lato. The latter and the chalaza enlarge significantly. The raphe, extensive chalaza and well-developed cup-like hypostase sensu lato play an important role in the development of the seed-coat. The inner, tanniniferous epidermis of the inner integument persists in parts of the mature seed-coat. The outer, distinctly tanniniferous epidermis of the outer integument shows in the mature seed-coat a degree of secondary wall thickening. This undifferentiated type of seed-coat of L. discolor (tribe Spondieae) is remarkably similar to that of Camnosperma minor (tribe Rhoideae), both also showing tendency towards the exotestal type. In the Rhoideae the endotestal, i.e. differentiated type, of seed-coat is also present. The exalbuminous seed of L. discolor represents a derived and advanced type.  相似文献   

13.
The exocarp sensu lato , which develops from the outer epidermis and adjacent parenchyma of the ovary wall, consists of collenchyma cells with a stomatous epidermis. The fleshy, parenchymatous mesocarp or sarcocarp develops after endocarp differentiation. The endocarp is partly spongy and partly woody. The spongy endocarp contains most of the vascular tissue and fills the cavities and grooves of the intricately sculptured outer woody endocarp. The inner woody endocarp and adjacent woody, endocarpal operculum develop from the inner epidermis and subepidermal parenchyma of the ovary wall. The bitegmic, anatropous ovule develops into a derived, exalbuminous seed with an undifferentiated seed-coat. An extensive chalaza, extensive hypostase sensu lato and the raphe are important in the development of the seed-coat. The pericarp and seed-coat of H. caffrum is compared with those of Sclerocarya birrea subsp. caffra and Lannea discolor . The close phylogenetic relationship of these three species of the Spondieae is reaffirmed. The marked similarities in pericarp and seed structure between H. caffrum and species of the genus Spondias are noted.  相似文献   

14.
Basbag S  Gencer O 《Hereditas》2007,144(1):33-42
Interspecific hybrid cottons (Gossypium hirsutum L. x G. barbadense L.) have great both yield and quality potential. This study was conducted to determine potential yields and quality characteristics of hybrid cotton varieties in southeastern Anatolia region of Turkey. The experiment was set out a completely randomized block design with four replications during 2003 and 2004 at University of Dicle, Faculty of Agriculture Experimental Field. Seven interspecific hybrid cotton varieties (48-08, Sevilla, Europe, Ica, Etna, 14-08 and Acalpi) which were obtained from Israel, and commonly grown varieties in this region, non-hybrid cotton varieties, GW Teks and DP-Opal were used as the materials of the study. Difference among the cultivars was significant for all traits except sympodial branch. Maximum number of boll and lint yield was 20.18 n plant(-1) and 1685.8 kg ha(-1) from interspecific hybrid cotton Ica, while interspecific hybrid cotton Europe recorded the lowest number of boll and lint yield. Interspecific hybrid cotton varieties showed higher value for fibre length, fibre fineness and fibre strength than non-hybrid cotton varieties. The longest fibres were obtained from Acalpi and Etna (34.08 and 33.88 mm), while non-hybrid varieties, DP-Opal and GW-Teks, had the lowest fibre length, 28.50 and 30.03 mm, respectively. The finest fibres obtained from Ica and 48-08 (3.42 and 3.45 mic.), the strongest fibres from Etna and Acalpi (40.07 and 40.23 g tex(-1)), and most elongation fibres from Acalpi (8.00%) and Sevilla (7.45%). Lint yield correlated positive and significant with fiber length.  相似文献   

15.
Plasmodesmata and pit development in secondary xylem elements   总被引:1,自引:0,他引:1  
J. R. Barnett 《Planta》1982,155(3):251-260
Developing pit membranes of secondary xylem elements in Drimys winteri, Fagus sylvatica, Quercus robur, Sorbus aucuparia, Tilia vulgaris and Trochodendron aralioides have been examined by transmission electron microscopy. Absence of plasmodesmata from the membranes of vessel elements and tracheids indicates that their pits develop independently of these structures. On the other hand, plasmodesmata are abundant in pit membranes between fibres, parenchyma cells, and combinations of these cell types in Fagus, Quercus and Tilia. In each case the plasmodesmata pass right through the developing pit membrane. In the case of Sorbus fibres, however, plasmodesmata were absent from the majority of pit membrane profiles seen in sections. Occasionally they were observed in large numbers associated with a swollen region on one side of the pit membrane between fibres and between fibres and parenchyma, radiating from a small area of the middle lamella. In the case of fibre to parenchyma pitting, this swelling was always found on the fibre side of the membrane, while on the other side a small number of plasmodesmata were present completing communication with the parenchyma cytoplasm. These observations are discussed with regard to the role of plasmodesmata in pit formation, and in the differentiation of the various cell types in secondary xylem. The significance their distribution may have for our understanding of xylem evolution is also discussed.  相似文献   

16.
17.
Declining temperature and low light often appear together to affect cotton (Gossypium hirsutum L.) growth and development. To investigate the interaction on fibre elongation, two cultivars were grown in fields in 2010 and 2011 and in pots in 2011 under three shading levels for three planting dates, and the differences of environmental conditions between different planting dates were primarily on temperature. Fibre length in the late planting date 25 May was the longest instead of the normal planting date. Late planting prolonged fibre elongation period and the effect of late planting on fibre length formation was greater than low light. In the normal planting date, shading increased fibre length through delaying the peak of β-1,3-glucanase gene expression and bringing the peak of β-1,3-glucan synthase gene expression forward, leading to a longer duration of plasmodesmata(PD) closure to increase fibre length, instead of changing sucrose contents or relate enzyme activities. However, in the late planting dates, the difference of the duration of PD closure between shading treatments was not obvious, but low light had a negative impact on sucrose contents, sucrose synthase (SuSy) and vacuolar invertase(VIN) activities during fibre rapid elongation period, leading to the decline of fibre length. Due to late planting and low light, the decreased extent of fibre length of Sumian 15 was larger than Kemian 1. Under the combined condition, Sumian 15 had a shorter gene expression of Expansin, and more sensitive sucrose content, VIN and SuSy activity during fibre rapid elongation period. This resulted in the length formation of Sumian 15 which was more sensitive than Kemian 1, when the cotton suffered the combined effects.  相似文献   

18.
19.
20.
Cotton (Gossypium hirsutum) fibre is an important natural raw material for textile industry in the world. Understanding the molecular mechanism of fibre development is important for the development of future cotton varieties with superior fibre quality. In this study, overexpression of Gh14‐3‐3L in cotton promoted fibre elongation, leading to an increase in mature fibre length. In contrast, suppression of expression of Gh14‐3‐3L, Gh14‐3‐3e and Gh14‐3‐3h in cotton slowed down fibre initiation and elongation. As a result, the mature fibres of the Gh14‐3‐3 RNAi transgenic plants were significantly shorter than those of wild type. This ‘short fibre’ phenotype of the 14‐3‐3 RNAi cotton could be partially rescued by application of 2,4‐epibrassinolide (BL). Expression levels of the BR‐related and fibre‐related genes were altered in the Gh14‐3‐3 transgenic fibres. Furthermore, we identified Gh14‐3‐3 interacting proteins (including GhBZR1) in cotton. Site mutation assay revealed that Ser163 in GhBZR1 and Lys51/56/53 in Gh14‐3‐3L/e/h were required for Gh14‐3‐3‐GhBZR1 interaction. Nuclear localization of GhBZR1 protein was induced by BR, and phosphorylation of GhBZR1 by GhBIN2 kinase was helpful for its binding to Gh14‐3‐3 proteins. Additionally, 14‐3‐3‐regulated GhBZR1 protein may directly bind to GhXTH1 and GhEXP promoters to regulate gene expression for responding rapid fibre elongation. These results suggested that Gh14‐3‐3 proteins may be involved in regulating fibre initiation and elongation through their interacting with GhBZR1 to modulate BR signalling. Thus, our study provides the candidate intrinsic genes for improving fibre yield and quality by genetic manipulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号