首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ATP-sensitive potassium (K(ATP)) channels are under complex regulation by intracellular ATP and ADP. The potentiatory effect of MgADP is conferred by the sulfonylurea receptor subunit of the channel, SUR, whereas the inhibitory effect of ATP appears to be mediated via the pore-forming subunit, Kir6.2. We have previously reported that Kir6.2 can be directly labeled by 8-azido-[gamma-(32)P]ATP. However, the binding affinity of 8-azido-ATP to Kir6.2 was low probably due to modification at 8' position of adenine. Here we demonstrate that Kir6.2 can be directly photoaffinity labeled with higher affinity by [gamma-(32)P]ATP-[gamma]4-azidoanilide ([gamma-(32)P]ATP-AA), containing an unmodified adenine ring. Photoaffinity labeling of Kir6.2 by [gamma-(32)P]ATP-AA is not affected by the presence of Mg(2+), consistent with Mg(2+)-independent ATP inhibition of K(ATP) channels. Interestingly, SUR1, which can be strongly and specifically photoaffinity labeled by 8-azido-ATP, was not photoaffinity labeled by ATP-AA. These results identify key differences in the structure of the nucleotide binding sites on SUR1 and Kir6.2.  相似文献   

2.
3'-end labeling of DNA with [alpha-32P]cordycepin-5'-triphosphate   总被引:61,自引:0,他引:61  
C P Tu  S N Cohen 《Gene》1980,10(2):177-183
Cordycepin-5'-triphosphate (3'-deoxyadenosine-5'-triphosphate) can be incorporated into the 3'-ends of DNA fragments using terminal deoxynucleotidyl transferase from calf thymus (Bollum, 1974). Because cordycepin-5'-monophosphate lacks a 3'-OH group, only a single residue is incorporated. Furthermore, DNA molecules that contain cordycepin-5'-monophosphate at their 3'-ends become resistant to hydrolysis by exonucleases that require free 3'-OH ends. As an alternative to 5'-end labeling of complementary DNA strands, we have used [32P]cordycepin-5'-triphosphate labeling of 3'-ends to confirm the nucleotide sequence of a HhaI-endonuclease-generated pTU4-plasmid DNA fragment that contains several hot spots for insertions of the transposable genetic element Tn3. 3'-End labeling with [32P] cordycepin-5'-triphosphate has also proved useful in determining the sequence of the pTU4 DNA in the vicinity of a strategically located SstII endonuclease cleavage site in the replication region of the plasmid.  相似文献   

3.
Doxorubicin, an anticancer drug, induces Ca2+ release from the terminal cisternae (TC) of skeletal muscle (Zorzato, F., Salviati, G., Facchinetti, T., and Volpe, P. (1985) J. Biol. Chem. 260, 7349-7355). Long wave ultraviolet irradiation of a TC fraction with morphologically intact feet structures (Saito, A., Seiler, S., Chu, A., and Fleischer, S. (1984) J. Cell Biol. 99, 875-885) in the presence of [14C]doxorubicin, led to covalent photolabeling of two proteins that exhibited apparent Mr values of 350,000 and 170,000. Such proteins were found to be absent in a fraction of longitudinal sarcoplasmic reticulum but enriched in junctional face membranes obtained by Triton X-100 treatment of the TC fraction. Three additional proteins with Mr values of 80,000, 60,000, and 30,000 were also faintly labeled in the junctional face membrane fraction. On a molar basis the highest level of incorporation was found in the 170,000-Da protein, probably a Ca2+-binding protein (Campbell, K. P., MacLennan, D. H., and Jorgensen, A. O. (1983) J. Biol. Chem. 258, 11267-11273). A lower level of labeling was observed in the 350,000-Da protein, tentatively identified as a component of the feet structures (Cadwell, J. J. S., and Caswell, A. H. (1982) J. Cell Biol. 93, 543-550). Photolabeling of junctional TC proteins did not occur if a 10-50-fold excess cold doxorubicin was included in the assay medium, indicating that it was displaceable and specific, and if ultraviolet irradiation was omitted. Photolabeling was inhibited by caffeine or ruthenium red, i.e. by an activator and an inhibitor of Ca2+ release from TC, respectively. Furthermore, photolabeling was prevented by [ethylenebis(oxyethylenenitrilo)]tetraacetic acid suggesting that doxorubicin binding is Ca2+-dependent. Doxorubicin-binding proteins are constituents of the junctional sarcoplasmic reticulum and might be involved in modulating Ca2+ release from TC.  相似文献   

4.
The synthesis of [3H]chloramphenicol and its erythro-diastereoisomer with specific activities of 1.25 Ci/mmol, and the further transformation of the [3H]chloramphenicol to a series of azido and diazo-substituted derivatives are described. The antibiotic activity of the compounds was considered insufficient for their use as photoaffinity labels.  相似文献   

5.
This method describes a procedure that can be carried out easily to obtain large amounts of [32P]phosphatidylcholine and [32P]lysophosphatidylcholine. The method involves germinating soya beans in the presence of [32P]Pi. The yield was 0.58% for [P]phosphatidylcholine and 0.52% for [32P]lysophosphatidylcholine, and the specific radioactivity of both was 10(7) d.p.m./mumol.  相似文献   

6.
Thymidine kinase 2 (TK2), also called mitochondrial thymidine kinase, is a pyrimidine deoxyribonucleoside kinase expressed in all cells and tissues. It was recently purified to apparent homogeneity from human leukemic spleen and the active enzyme was shown to be a monomer of a 29-kDa polypeptide. The enzyme is feedback-inhibited by both end products, dCTP and dTTP. Here we show that TK2 purified from several different sources, including purified beef heart mitochondria, could be directly photoaffinity labeled with radioactive dTTP (approximately 18% of all TK2 molecules were cross-linked to dTTP after 20 min of ultraviolet irradiation) or to a lower extent with dCTP. Photo-incorporation was inhibited by the presence of the other effector but also the phosphate donor ATP blocked photolabeling, with dTTP. Addition of nucleoside substrates gave only a marginal inhibition of photo-incorporation. There were no detectable difference in the molecular size of photolabeled TK2 isolated from human spleen, brain or placenta, monkey liver, beef heart and beef heart mitochondria. Nor was there any significant differences in the enzyme kinetic properties of these enzymes. Cleavage of labeled TK2 with cyanogen bromide showed that dTTP was incorporated into a single 3-kDa peptide. TK2 was the only pyrimidine deoxynucleoside kinase expressed in liver, heart and brain. A detailed characterization of the subunit structure and substrate specificity of this enzyme is of importance for the design of new antiviral and cytostatic therapies based on nucleoside analogs.  相似文献   

7.
F Boulay  P Dalbon  P V Vignais 《Biochemistry》1985,24(25):7372-7379
2-Azidoadenosine 5'-diphosphate (2-azido-ADP) labeled with 32P in the alpha-position was prepared and used to photolabel the nucleotide binding sites of beef heart mitochondrial F1-ATPase. The native F1 prepared by the procedure of Knowles and Penefsky [Knowles, A. F., & Penefsky, H. S. (1972) J. Biol. Chem. 247, 6617-6623] contained an average of 2.9 mol of tightly bound ADP plus ATP per mole of enzyme. Short-term incubation of F1 with micromolar concentrations of [alpha-32P]-2-azido-ADP in the dark in a Mg2+-supplemented medium resulted in the rapid supplementary binding of 3 mol of label/mol of F1, consistent with the presence of six nucleotide binding sites per F1. The Kd relative to the reversible binding of [alpha-32P]-2-azido-ADP to mitochondrial F1 in the dark was 5 microM in the presence of MgCl2 and 30 microM in the presence of ethylenediaminetetraacetic acid. A linear relationship between the percentage of inactivation of F1 and the extent of covalent photolabeling by [alpha-32P]-2-azido-ADP was observed for percentages of inactivation up to 90%, extrapolating to 2 mol of covalently bound [alpha-32P]-2-azido-ADP/mol of F1. Under these conditions, only the beta subunit was photolabeled. Covalent binding of one photolabel per beta subunit was ascertained by electrophoretic separation of labeled and unlabeled beta subunits based on charge differences and by mapping studies showing one major radioactive peptide segment per photolabeled beta subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
An intracellular adriamycin (ADM)-binding protein purified from the cytosol of L1210 mouse lymphocytic leukemia cells had a molecular weight of 700-1500 kDa and hydrolyzed Suc-LLVY-MCA. When L1210 cells were incubated with a photoactive ADM analogue, N-(p-azidobenzoyl)-adriamycin (NAB-ADM), most of the NAB-ADM was found to localize in the nuclei. In situ photoaffinity labeling of L1210 cells with NAB-ADM resulted in low protease activity in the cytosol and nuclear extracts and the cells showed selective photoincorporation of NAB-ADM into the proteasome. These results suggest that the proteasome is a translocator of ADM from the cytoplasm to the nucleus and might therefore become a new candidate for cancer chemotherapy.  相似文献   

9.
Direct photoaffinity labeling with radioactively labeled adenosine 3'-phosphate 5'-phosphosulfate (PAPS) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography was used to identify PAPS binding proteins in a Golgi membrane preparation of bovine adrenal medulla. [3'-32P]PAPS was synthesized from adenosine 5'-phosphosulfate (APS) and [gamma-32P]ATP using APS kinase prepared from yeast and was purified by reverse-phase ion pair high performance liquid chromatography. Upon irradiation with UV light, [3'-32P]PAPS, as well as [35S]PAPS under conditions which minimized sulfotransferase-catalyzed incorporation of 35SO4 from [35S]PAPS into proteins, bound selectively to a 34-kDa protein of the Golgi membrane preparation. PAPS binding to the 34-kDa protein was strongly inhibited by the presence of 50 microM atractyloside. The 34-kDa PAPS binding protein therefore appears to be similar to the mitochondrial ATP/ADP translocator with regard to both molecular weight and inhibition by atractyloside of adenine nucleotide binding. Photoaffinity labeling will be useful in the purification and functional identification of the 34-kDa protein.  相似文献   

10.
Photoaffinity labeling has been performed on pancreatic zymogen granule membranes using 8-azido-[alpha-32P]ATP (8-N3-ATP). Proteins of 92, 67, 53, and 35 kdaltons (kDa) were specifically labeled. ATP (100 microM) inhibited very strongly the labeling with 8-N3-ATP, while ADP was much less potent, AMP and cAMP being inefficient. The apparent constants for 8-N3-ATP binding were in the micromolar concentration range for the four labeled proteins. Without irradiation, 8-N3-ATP was a competitive inhibitor (Ki = 2.66 microM) for the hydrolysis of ATP by the ATP diphosphohydrolase. The optimal conditions for the photolabeling of the 92- and 53-kDa proteins were pH 6.0 in presence of divalent cations. On the other hand the 67- and 35-kDa proteins required an alkaline pH and the addition of EDTA in the photolabeling medium. No proteins could be labeled on intact zymogen granules, showing that all the high-affinity ATP-binding sites of the membrane were located at the interior of the granule. Both the 92- and 53-kDa glycoproteins could bind to concanavalin A-Sepharose and be extracted in the detergent phase in the Triton X-114 phase separation system. These latter properties are typical of integral membrane proteins. In addition, the 53-kDa labeled protein was sensitive to endo-beta-N-acetylglucosaminidase digestion. Photolabeling with 8-N3-ATP of two different preparations of purified ATP diphosphohydrolase also led to the labeling of a 53-kDa protein. Thus among the four proteins labeled with 8-N3-ATP on the pancreatic zymogen granule membrane, the 53-kDa integral membrane glycoprotein was shown to bear the catalytic site of the ATP diphosphohydrolase.  相似文献   

11.
The covalent derivative of the tryptophanyl-tRNA synthetase obtained under the action of32PPi contains one mole of the covalently bound pyrophosphate (or 2 moles of orthophosphate) per mole of dimeric enzyme. Dephosphorylation with alkaline phosphatase causes practically no changes of enzymatic activity although the enzyme looses its ability to bind PPi.Enzymes tryptophanyl-tRNA synthetase (EC 6.1.1.2), alkaline phosphatase (EC 3.1.3.1), inorganic pyrophosphatase (EC 3.6.1.1)  相似文献   

12.
13.
14.
15.
S Collins  M A Marletta 《Biochemistry》1986,25(15):4322-4329
Binding proteins for the polycyclic aromatic hydrocarbon carcinogen benzo[a]pyrene (B[a]P) have been purified from C57B1/6J mouse liver. Following affinity chromatography on aminopyrene-Sepharose, a single polypeptide of 29,000 daltons was isolated. The photolabile compound 1-azidopyrene was developed as a photoaffinity labeling agent to identify the protein during its purification. 1-Azidopyrene was found to be a competitive inhibitor of [3H]B[a]P binding. Affinity labeling studies with [3H]-1-azidopyrene in unfractionated cytosol, and in purified preparations, yielded a single covalently labeled protein of 29,000 daltons. The formation of this labeled species was blocked by preincubation with excess unlabeled B[a]P. A native molecular weight of 30,000 was estimated by gel filtration chromatography of [3H]B[a]P- and [3H]-1-azidopyrene-labeled cytosol proteins. An equilibrium dissociation constant of 2.69 +/- 0.66 nM and a maximum number of binding sites of 2.07 +/- 0.10 nmol of [3H]B[a]P bound/mg of protein were estimated for the pure protein. Two-dimensional gel electrophoresis further resolved the purified 29,000-dalton protein into three major isoelectric variants, each of which was specifically labeled by [3H]-1-azidopyrene.  相似文献   

16.
The fibrinogen receptor GPIIb-IIIa plays a crucial role in platelet aggregation. Here we show that the adenine nucleotide, 8-azido-ATP, inhibits ADP-induced conformational change of the platelet fibrinogen receptor GPIIb-IIIa (integrin alpha IIb beta 3). Photoaffinity labeling of intact platelets with 8-azido-[gamma-32P]ATP exclusively modifies two plasma-membrane glycoproteins which are identical with both subunits of GPIIb-IIIa. The presence of adenine-nucleotide-binding sites on GPIIb-IIIa implies that the platelet fibrinogen receptor is directly regulated by extracellular adenine nucleotides.  相似文献   

17.
A method has been developed for the enzymatic preparation of alpha-(32)P-labeled ribo- and deoxyribonucleoside triphosphates, cyclic [(32)P]AMP, and cyclic [(32)P]GMP of high specific radioactivity and in high yield from (32)Pi. The method also enables the preparation of [gamma-(32)P]ATP, [gamma-(32)P]GTP, [gamma-(32)P]ITP, and [gamma-(32)P]-dATP of very high specific activity and in high yield. The preparation of the various [alpha-(32)P]nucleoside triphosphates relies on the phosphorylation of the respective 3'-nucleoside monophosphates with [gamma-(32)P]ATP by polynucleotide kinase and a subsequent nuclease reaction to form [5'-(32)P]nucleoside monophosphates. The [5'-(32)P]nucleoside monophosphates are then converted enzymatically to the respective triphosphates. All of the reactions leading to the formation of [alpha-(32)P]nucleoside triphosphates are carried out in the same reaction vessel, without intermediate purification steps, by the use of sequential reactions with the respective enzymes. Cyclic [(32)P]AMP and cyclic [(32)P]GMP are also prepared enzymatically from [alpha-(32)P]ATP or [alpha-(32)P]GTP by partially purified preparations of adenylate or guanylate cyclases. With the exception of the cyclases, all enzymes used are commerically available. The specific activity of (32)P-labeled ATP made by this method ranged from 200 to 1000 Ci/mmol for [alpha-(32)P]ATP and from 5800 to 6500 Ci/mmol for [gamma-(32)P]ATP. Minor modifications of the method should permit higher specific activities, especially for the [alpha-(32)P]nucleoside triphosphates. Methods for the use of the [alpha-(32)P]nucleoside phosphates are described for the study of adenylate and guanylate cyclases, cyclic AMP- and cyclic GMP phosphodiesterase, cyclic nucleotide binding proteins, and as precursors for the synthesis of other (32)P-labeled compounds of biological interest. Moreover, the [alpha-(32)P]nucleoside triphosphates prepared by this method should be very useful in studies on nucleic acid structure and metabolism and the [gamma-(32)P]nucleoside triphosphates should be useful in the study of phosphate transfer systems.  相似文献   

18.
Polypeptide components of the phencyclidine (PCP) receptor present in rat hippocampus were identified with the photolabile derivative of phencyclidine [3H]azidophencyclidine ( [3H]AZ-PCP). The labeled affinity probe was shown to reversibly bind to specific sites in the dark. The number of receptor sites bound is equal to those labeled by [3H]PCP, and their pharmacology and stereospecificity are identical with those of the PCP/sigma-opiate receptors. The dissociation constant of [3H]AZ-PCP from these receptors is 0.25 +/- 0.08 microM. Photolysis of hippocampus membranes preequilibrated with [3H]AZ-PCP, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, revealed the existence of five major labeled bands of which a Mr 90 000 band and a Mr 33 000 band were heavily labeled. Inhibition experiments, in which membranes were incubated with [3H]AZ-PCP in the presence of various PCP analogues and opiates, indicate that labeling of both the Mr 90 000 band and the Mr 33 000 band is sensitive to relatively low concentrations (10 microM) of potent PCP/sigma receptor ligands, while similar concentrations of levoxadrol, naloxone, morphine, D-Ala-D-Leu-enkephalin, atropine, propranolol, and serotonin were all ineffective. Stereoselective inhibition of labeling of the Mr 90 000 band and of the Mr 33 000 band was also observed by the use of dexoxadrol and levoxadrol. The Mr 33 000 band was not as sensitive as the Mr 90 000 band to inhibition by the selective PCP receptor ligands N-[1-(2-thienyl)cyclohexyl]piperidine and PCP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
An enzymatic method for the synthesis of [beta-32P]ADP from [gamma-32P]ATP is described. This substrate is required for the assay of ADPase and is not commercially available. The method described results in a preparation of [beta-32P]ADP of high purity with a yield of approximately 40% the theoretical obtainable.  相似文献   

20.
P Dalbon  F Boulay  P V Vignais 《FEBS letters》1985,180(2):212-218
The ADP/ATP carrier of beef heart mitochondria is able to bind 2-azido-[alpha-32P]ADP in the dark with a Kd value of congruent to 8 microM. 2-Azido ADP is not transported and it inhibits ADP transport and ADP binding. Photoirradiation of beef heart mitochondria with 2-azido-[alpha-32P]ADP results mainly in photolabeling of the ADP/ATP carrier protein; photolabeling is prevented by carboxyatractyloside, a specific inhibitor of ADP/ATP transport. Upon photoirradiation of inside-out submitochondrial particles with 2-azido-[alpha-32P]ADP, both the ADP/ATP carrier and the beta subunit of the membrane-bound F1-ATPase are covalently labeled. The binding specificity of 2-azido-[alpha-32P]ADP for the beta subunit of F1-ATPase is ascertained by prevention of photolabeling of isolated F1 by preincubation with an excess of ADP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号