首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
M J Ernest 《Biochemistry》1982,21(26):6761-6767
Tyrosine aminotransferase messenger ribonucleic acid (mRNA) activity in rat liver was rapidly increased 3-6-fold following in vivo administration of hydrocortisone acetate, dibutyryladenosine cyclic 3',5'-phosphate, or the protein synthesis inhibitor cycloheximide. Treatment with the steroid hormone or cyclic nucleotide in combination with cycloheximide resulted in levels of tyrosine aminotransferase mRNA 10-20-fold greater than control values. These changes in mRNA activity were not accompanied by changes in albumin mRNA or total liver template activity. The rapid decline in tyrosine aminotransferase mRNA activity following cordycepin inhibition of de novo RNA synthesis was prevented by cycloheximide treatment. This protection was not observed when pactamycin was substituted for cycloheximide, demonstrating that the inhibition of protein synthesis per se was not responsible for the stabilization of tyrosine aminotransferase mRNA. Based upon the effects of cycloheximide and pactamycin on rat liver polysome structure, it is concluded that the cycloheximide-mediated increase in tyrosine aminotransferase mRNA activity is the result of stabilization of the mRNA molecule which renders the message less susceptible to inactivation and degradation in the cytoplasm. The action of cycloheximide is very specific for tyrosine aminotransferase, phosphoenolpyruvate carboxykinase, and probably several other mRNAs that code for minor liver proteins that turn over rapidly in response to hormonal or metabolic stimuli.  相似文献   

2.
3.
4.
5.
In human liver, unlike in rat liver, there is no apparent acinar heterogeneity of total cellular activity of phosphoenolpyruvate carboxykinase [Wimmer, Luttringer & Columbi (1990) Histochemistry 93, 409-415]. Since the intracellular compartmentation of phosphoenolpyruvate carbonxykinase differs in rat and human liver, we examined the acinar heterogeneity of cytosolic and organelle-bound activities of this enzyme in the guinea pig, which shows a more similar intracellular compartmentation of enzyme activity to human liver than does the rat. Cytosolic phosphoenolpyruvate carboxykinase activity was higher in periportal than in perivenous hepatocytes, whereas the organelle-bound activity was similar in the two cell populations. Aspartate aminotransferase and alanine aminotransferase activities showed a similar distribution to phosphoenolpyruvate carboxykinase, with a higher cytosolic activity in periportal than in perivenous hepatocytes but a similar organelle-bound activity in the two cell populations. Data on the acinar zonation of enzymes determined in whole cells or tissue should be interpreted cautiously if the enzyme activity is present in more than one subcellular compartment.  相似文献   

6.
Isolated mitochondria of pigeon and guinea pig liver were subjected to zonal centrifugation. With pigeon liver mitochondria there was uniform distribution of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, malate dehydrogenase, aspartate aminotransferase and glutamate dehydrogenase activities. Guinea pig liver mitochondria demonstrated two pyruvate carboxylase and phosphoenolpyruvate carboxykinase maxima but only one maximum with aspartate aminotransferase, malate dehydrogenase and glutamate dehydrogenase. Mitochondrial enzyme levels in rat, pigeon and guinea pig indicate different roles of certain gluconeogenic enzymes in the transport of carbon and hydrogen in and out of mitochondria.  相似文献   

7.
8.
9.
Cyclic AMP-stimulated mRNA levels in cultured rat hepatocytes were inhibited by three different inhibitors of cAMP-dependent protein kinase activity: (i) Rp-cAMPS, a cAMP analog with a sulfur substitution at the equatorial oxygen of the cyclic monophosphate; (ii) H8, an isoquinoline sulfonamide derivative; and (iii) PKI, a 20-amino acid synthetic peptide of the Walsh protein kinase inhibitor. These inhibitors specifically blocked the cAMP-stimulated increase in mRNA for tyrosine aminotransferase and phosphoenolpyruvate carboxykinase; they had no effect on the level of albumin mRNA which is not cAMP regulated. These results provide functional evidence that kinase activity involving protein phosphorylation is required in cAMP-mediated gene expression in mammalian cells.  相似文献   

10.
Tissue-specific extinguisher 1 (Tse-1) is a genetic locus on mouse chromosome 11 that can repress expression of several liver genes in trans. This locus is clearly active in fibroblasts, as hepatoma cells retaining fibroblast chromosome 11 are extinguished for both tyrosine aminotransferase and phosphoenolpyruvate carboxykinase gene expression. To assess the activity of Tse-1 in other tissues, we transferred mouse chromosome 11 from several different cell types into rat hepatoma recipients. Tse-1 was active in nonhepatic cell lines derived from each primary germ layer, but Tse-1 activity was not apparent in hybrids between hepatoma cells and primary mouse hepatocytes. These differences in the genetic activity of murine Tse-1 were apparently heritable in cis.  相似文献   

11.
Effects of meal feeding schedule and bilateral lesions of the ventromedial hypothalamus (VMH) on the circadian rhythm of pineal serotonin N-acetyltransferase (SNAT) activity were examined in rats, under LD (12:12) condition. Neither meal feeding nor VMH lesions affected the phase of the circadian rhythm of pineal SNAT activity, but the VMH lesions reduced the level. Meal feeding caused a shift of the phases of the daily rhythms of phosphoenolpyruvate carboxykinase and tyrosine aminotransferase activities in the liver. These findings suggest that the circadian rhythm of pineal SNAT activity is not entrained by the food intake, and that the VMH does not function as a master oscillator of the rhythm.  相似文献   

12.
1. In order to assess whether the potential ability of heart ventricular muscle and liver to metabolise substrates such as alanine, aspartate and lactate varies as the sheep matures and its nutrition changes, the activities of the following enzymes were determined in tissues of lambs obtained at varying intervals between 50 days after conception to 16 weeks after birth and in livers from adult pregnant ewes: lactate dehydrogenase (EC 1.1.1.27), alanine aminotransferase (EC 2.6.1.2), pyruvate kinase (EC 2.7.1.40), pyruvate carboxylase (EC 6.4.1.1), phosphoenolpyruvate carboxykinase (GTP)(EC 4.1.1.32), malate dehydrogenase (EC 1.1.1.37), aspartate aminotransferase (EC 2.6.1.1) and citrate (si)-synthase (EC 4.1.3.7). 2. In the heart a most marked increase in alanine aminotransferase activity was found throughout development. During this period the activities of citrate (si)-synthase, lactate dehydrogenase and pyruvate carboxylase also increased. There were no substantial changes in the activities of aspartate aminotransferase, malate dehydrogenase or pyruvate kinase. Pyruvate kinase activities were five times greater in the heart compared with those found in the liver. No significant activity of phosphoenolpyruvate carboxykinase (GTP) was detected in heart muscle. 3. In the liver the activities of both alanine aminotransferase and aspartate aminotransferase increased immediately following birth although the activity of alanine aminotransferase was lower in livers of pregnant ewes than in any of the lambs. As with alanine aminotransferase the highest activities of lactate dehydrogenase were found during the period of postnatal growth. No marked changes were observed in malate dehydrogenase or citrate (si)-synthase activities during development. A small decline in pyruvate kinase activity occurred whilst the activities of pyruvate carboxylase and phosphoenolpyruvate carboxykinase (GTP) tended to rise during development.  相似文献   

13.
The effects of triamcinolone on renal and hepatic phosphoenolpyruvate carboxykinase activity in the developing rat were investigated. The hormone induced increases in pre-existing enzyme activity of both tissues in fetal and neonatal rats, yet did not cause the primary appearance of phosphoenolpyruvate carboxykinase activity in utero. Neonatal hepatic phosphoenolpyruvate carboxykinase activity was increased 2--3 fold by triamcinolone form the 3rd to the 15th postnatal day. This was shown to be additive to the effect of Bt2cAMP on enzyme activity. The increases in phosphoenolpyruvate carboxykinase activity were demonstrated to be due to increased synthesis of the enzyme, which was accompanied by a proportionate increase in the amount of functional phosphoenolpyruvate carboxykinase mRNA, as measured by the polyribosomal and poly(A)-containing RNA directed cell-free synthesis of the enzyme. The demonstration of a triamcinolone effect on kidney and liver phosphoenolpyruvate carboxykinase activity in fetal and neonatal rats provides support for a possible role of glucocorticoids in the regulation of phosphoenolpyruvate carboxykinase activity during development.  相似文献   

14.
Somatic cell hybrids formed by fusing hepatoma cells with fibroblasts generally fail to express liver functions, a phenomenon termed extinction. Previous studies demonstrated that extinction of the genes encoding tyrosine aminotransferase, phosphoenolpyruvate carboxykinase, and argininosuccinate synthetase is mediated by a specific genetic locus (TSE1) that maps to mouse chromosome 11 and human chromosome 17. In this report, we show that full repression of these genes requires a genetic factor in addition to TSE1. This conclusion is based on the observation that residual gene activity was apparent in monochromosomal hybrids retaining human TSE1 but not in complex hybrids retaining many fibroblast chromosomes. Furthermore, TSE1-repressed genes were hormone inducible, whereas fully extinguished genes were not. Analysis of hybrid segregants indicated that genetic loci required for the complete repression phenotype were distinct from TSE1.  相似文献   

15.
Adaptive alterations of the enzymes involved in gluconeogenesis have been studied in homofermentative Lactobacillus casei after growth on ribose. Among the enzymes induced were phosphoenolpyruvate carboxykinase, fructose 1,6-diphosphatase and glucose 6-phosphatase. The activities of phosphoglucomutase and fructose 1,6-diphosphate aldolase, measured in the direction of condensation of triose phosphates, were also observed to be enhanced. Oxalacetate, the substrate of phosphoenolpyruvate carboxykinase, appears to be formed through aspartate aminotransferase activity developed in ribose-grown cells. The gluconeogenic enzymes were repressed when glucose was added to the pentose-containing medium during the growth of the organism. The relative participation of precursors, assessed from the extent of incorporation of radioactivity into cellular polysaccharides, suggested that the products of ribose fermentation did not contribute to new glucose synthesis.  相似文献   

16.
The relative abundances of mRNAs encoding the five urea cycle enzymes during development of mouse liver have been determined and compared with those of mRNAs encoding four other liver-specific proteins (phosphoenolpyruvate carboxykinase, tyrosine aminotransferase, alpha-fetoprotein, and albumin). Urea cycle enzyme mRNAs in fetal liver are expressed at 2-14% of the abundance in adult liver as early as 6 days before birth. Expression of the urea cycle enzyme mRNAs is not coordinate during the fetal and neonatal period. However, profiles of three urea cycle enzyme mRNAs are quite similar to that of alpha-fetoprotein mRNA, suggesting the possibility of a common response to regulatory signals during fetal development. With the exception of ornithine transcarbamylase mRNA, the urea cycle enzyme mRNAs have been shown previously to be inducible by cAMP and glucocorticoids. However, only argininosuccinate lyase mRNA exhibits any significant change in abundance at birth, resembling postnatal expression of tyrosine aminotransferase mRNA. The results indicate that the urea cycle enzyme mRNAs are potentially useful markers for elucidating various features of hepatocyte differentiation in mammals.  相似文献   

17.
The injection of streptozotocin to 18-day-old rat fetuses induced, 2 days later, a 50% fall in plasma insulin and a twofold increase in plasma glucagon concentrations and liver cAMP levels. Phosphoenolpyruvate carboxykinase mRNA that were undetectable in the fetal rat liver, accumulated 48 h after streptozotocin injection, their concentration being 30% of that found in the liver of 1-day-old newborn rats in whom liver phosphoenolpyruvate carboxykinase gene expression is maximal. Physiological concentrations of glucagon (0.7 +/- 0.2 nM) induced, within 2 h, phosphoenolpyruvate carboxykinase mRNA accumulation in cultured hepatocytes from 20-day-old fetuses. The addition of insulin (0.01-100 nM) inhibits, by no more than 30%, the glucagon-induced phosphoenolpyruvate carboxykinase mRNA accumulation. Exposure of fetal hepatocytes to insulin for 24 h did not change the glucagon dose/response curve and did not lead to a more efficient inhibition of the glucagon-induced phosphoenolpyruvate carboxykinase mRNA accumulation, despite a clear stimulatory effect on the rate of lipogenesis. In contrast, when hepatocytes were cultured in the presence of dexamethasone, the glucagon-induced phosphoenolpyruvate carboxykinase mRNA accumulation can be totally inhibited by pharmacological concentrations of insulin (10 nM). From these in-vivo and in-vitro studies, it is concluded that, under physiological conditions, the postnatal rise in plasma glucagon concentration is more important than the fall in the plasma insulin concentration for the primary induction of liver phosphoenolpyruvate carboxykinase gene expression.  相似文献   

18.
In lymphocytes of the rat, pyruvate kinase, phosphoenolpyruvate carboxykinase and NADP+-linked malate dehydrogenase (decarboxylating) are distributed almost exclusively in the cytosol whereas pyruvate carboxylase is distributed almost entirely in the mitochondria. For NAD+-linked malate dehydrogenase and aspartate aminotransferase approximately 80% and 40%, respectively, are in the cytosolic compartment. Since glutaminase is present in the mitochondria, glutamine is converted to malate within the mitochondria but further metabolism of the malate is likely to occur in the cytosol. Hence pyruvate produced from this malate, via oxaloacetate and phosphoenolpyruvate carboxykinase, may be rapidly converted to lactate, so restricting the entry of pyruvate into the mitochondria and explaining why very little glutamine is completely oxidised in these cells despite a high capacity of the Krebs cycle.  相似文献   

19.
20.
A variety of 6- and 8-substituted analogs of cAMP (cyclic adenosine 3:5-monophosphate) have been tested for their ability to increase activity of tyrosine aminotransferase (EC 2.6.1.5) in cultured Reuber H35 hepatoma cells. Some analogs, particularly the 8-thio-substituted ones, produced effects approximately equivalent to those generated by N-6, O2'-dibutyryl cAMP. In contrast, cAMP and its O-2-monobutyryl derivative were relatively ineffective even at very high concentrations, whereas three other analogs actually depressed the activity of the aminotransferase. Changes in enzyme activity generated by the various analogs were paralleled closely by changes in the relative rate of aminotransferase synthesis. An excellent correlation was found to exist between the ability of any given analog to influence the activity of tyrosine aminotransferase and that of phosphoenolpyruvate carboxykinase (EC 4.1.1.32). A similar correlation was found to exist between the ability of various analogs to evelate the activity of these enzymes and to inhibit reversibly the growth of H35 cells. Only one of five inhibitors of cAMP phosphodiesterase activity tested produce any increase in aminotransferase activity when added alone. All of the 6- and 8-substituted analogs tested, including noniducers, stimulated f1 histone phosphorylation in crude rat liver extracts with approximately equal potencies. On the other hand, dibutyryl cAMP was only a weak activator of protein kinase in vitro, even though it is a potent enzyme inducer. A possible resolution of this apparent discrepancy has been provided by preliminary analyses of site-specific f1 histone phosphorylation in whole cells. Only compounds active as aminotransferase inducers are capable of stimulating phosphorylation of the serine-37 residue of endogenous f1 histone (3- to 10-fold).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号