首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported the identification of an intron (CaLSU) in the 25S ribosomal RNA of some Candida albicans yeast strains. CaLSU was shown to self-splice and has the potential to adopt a secondary structure typical of group I introns. The presence of CaLSU inC. albicans strains correlates with a high degree of susceptibility to base analog antifungal agents, 5-fluorocytosine (5-FC) or 5-fluorouracil (5-FU). Cell death, resulting from addition of base analogs to growing cultures, precluded demonstration of a causal relationship between CaLSU presence and susceptibility to base analogs. In the present study, CaLSU was inserted in a non-essential lacZ reporter gene and expression was examined in Saccharomyces cerevisiae. Different mutations affecting in vitro self-splicing also had similar effects on reporter gene expression in vivo. This indicates that in vivo removal of CaLSU from the reporter gene occurs through the typical self-splicing mechanism of group I introns. Base analogs inhibited expression of the reporter gene product in a concentration-dependent manner upon their addition to the cultures. This supports a model in which disruption of intron secondary structure, consecutive to the incorporation of nucleotide analogs, is a major factor determining the susceptibility of C.albicans cells to base analogs.  相似文献   

2.
3.
4.
In the present study, we determined the sequence of group I self-splicing introns found in the large ribosomal RNA subunit of Candida albicans, Candida stellatoidea and the recently-described species Candida dubliniensis. It was found that both the intron and ribosomal RNA nucleotide sequences are almost perfectly identical between different C. albicans strains as well as between C. albicans and C. stellatoidea strains. Comparisons of ribosomal RNA sequences suggest that local isolates of atypical C. albicans from individuals infected with human immunodeficiency virus can be assigned to the C. dubliniensis species. C. dubliniensis strains also harbor a group I intron in their ribosomal RNA, as observed in about 40% of C. albicans strains and all C. stellatoidea strains. This novel C. dubliniensis group I intron is identical to the C. albicans and C. stellatoidea intron, except for two widely divergent stem-loop regions. Despite these differences, the C. dubliniensis intron possesses self-splicing ability in an in vitro assay. Taken together, these data support the idea that C. albicans and C. stellatoidea should be joined together as variants of the same species while C. dubliniensis is a distinct but closely related microorganism. To our knowledge, the C. albicans and C. dubliniensis introns are the first example of a pair of homologous group I introns differing only by the presence of apparently facultative sequences in some stem-loops suspected to be involved in stabilization of tertiary structure.  相似文献   

5.
Candida albicans is one of many infectious pathogens that are evolving resistance to current treatments. RNAs provide a large class of targets for new therapeutics for fighting these organisms. One strategy for targeting RNAs uses short oligonucleotides that exhibit binding enhancement by tertiary interactions in addition to Watson-Crick pairing. A potential RNA target in C. albicans is the self-splicing group I intron in the LSU rRNA precursor. The recognition elements that align the 5' exon splice site for a ribozyme derived from this precursor are complex [Disney, M. D., Haidaris, C. G., and Turner, D. H. (2001) Biochemistry 40, 6507-6519]. These recognition elements have been used to guide design of hexanucleotide mimics of the 5' exon that have backbones modified for nuclease stability. These hexanucleotides bind as much as 100000-fold more tightly to a ribozyme derived from the intron than to a hexanucleotide mimic of the intron's internal guide sequence, r(GGAGGC). Several of these oligonucleotides inhibit precursor self-splicing via a suicide inhibition mechanism. The most promising suicide inhibitor is the ribophosphoramidate rn(GCCUC)rU, which forms more trans-spliced than cis-spliced product at oligonucleotide concentrations of >100 nM at 1 mM Mg(2+). The results indicate that short oligonucleotides modified for nuclease stability can target catalytic RNAs when the elements of tertiary interactions are complex.  相似文献   

6.
Screening a Clostridium difficile strain collection for the chimeric element CdISt1, we identified two additional variants, designated CdISt1-0 and CdISt1-III. In in vitro assays, we could prove the self-splicing ribozyme activity of these variants. Structural comparison of all known CdISt1 variants led us to define four types of IStrons that we designated CdISt1-0 through CdISt1-III. Since CdISt1-0 encodes two complete transposase-like proteins (TlpA and TlpB), we suggest that it represents the original genetic element, hypothesized before to have originated by fusion of a group I intron and an insertion sequence element.  相似文献   

7.
Candida albicans is the primary fungal pathogen of humans. Despite the need for novel drugs to combat fungal infections [Sobel, J.D. (2000) Clin Infectious Dis 30: 652], antifungal drug discovery is currently limited by both the availability of suitable drug targets and assays to screen corresponding targets. A functional genomics approach based on the diploid C. albicans genome sequence, termed GRACETM (gene replacement and conditional expression), was used to assess gene essentiality through a combination of gene replacement and conditional gene expression. In a systematic application of this approach, we identify 567 essential genes in C. albicans. Interestingly, evaluating the conditional phenotype of all identifiable C. albicans homologues of the Saccharomyces cerevisiae essential gene set [Giaever, G., Chu, A.M., Ni, L., Connelly, C., Riles, L., Veronneau, S., et al. (2002) Nature 418: 387-391] by GRACE revealed only 61% to be essential in C. albicans, emphasizing the importance of performing such studies directly within the pathogen. Construction of this conditional mutant strain collection facilitates large-scale examination of terminal phenotypes of essential genes. This information enables preferred drug targets to be selected from the C. albicans essential gene set by phenotypic information derived both in vitro, such as cidal versus static terminal phenotypes, as well as in vivo through virulence studies using conditional strains in an animal model of infection. In addition, the combination of phenotypic and bioinformatic analyses further improves drug target selection from the C. albicans essential gene set, and their respective conditional mutant strains may be directly used as sensitive whole-cell assays for drug screening.  相似文献   

8.
R B Waring 《Nucleic acids research》1989,17(24):10281-10293
The group I intron from the rRNA precursor of Tetrahymena undergoes self-splicing. The intron RNA catalyst contains about 400 phosphate groups. Their role in catalysis has been investigated using phosphorothioate substituted RNA. In such RNA one of the peripheral oxygens of the phosphodiesters is replaced with sulfur. Incorporation of adenosine 5' phosphorothioate in either the 5' or 3' half of the ribozyme blocked splicing whereas incorporation of uridine 5' phosphorothioate only blocked splicing if the substitution was in the 3' half of the molecule. Modification-interference assays located two major and three minor inhibitory phosphorothioate substitutions suggesting that the corresponding phosphates play a significant role in self-splicing. These are all located in the most highly conserved region of the intron.  相似文献   

9.
We have characterized the in vitro self-splicing of intron aI5 alpha containing precursor RNA from the yeast mitochondrial gene coding for cytochrome oxidase subunit I. This intron follows the rules for group I self-splicing introns and all the characteristic products have been identified. In addition we have detected abnormal RNA products with features that indicate that the self-splicing behaviour of this intron is more complex. Two intron circles are formed by use of a major and minor intron-internal site for circle closure. A cryptic 5'-splice site located in the 3' exon results in guanosine nucleotide mediated opening at a position 30 nt downstream of the normal 3' splice site. The reactions can all be explained on the basis of the "splice guide" model proposed by Davies et al (1982 Nature 300 719-724). Although the sequence motifs at cyclization and splice sites occur more often in this intron, only some of them are allowed to interact with the internal guide sequence, suggesting that both primary structure and spatial folding of the RNA are involved in formation of productive reaction sites.  相似文献   

10.
RNA splicing in the T-even bacteriophage   总被引:4,自引:0,他引:4  
F K Chu  G F Maley  F Maley 《FASEB journal》1988,2(3):216-223
Group 1 introns, first demonstrated in the nuclear large rRNA of Tetrahymena thermophila and subsequently in many yeast, fungal mitochondrial, and chloroplast precursor RNAs, are capable of intron excision and exon ligation in vitro, although this process occurs much more rapidly in vivo. The discovery and characterization of a similar intron in the T4 phage thymidylate synthase gene (td) led to the finding of additional group 1 introns in other T4 genes and in genes of the related T2 and T6 phages. Because protein factors are not required in the splicing of group 1 introns in vitro, it has been postulated that the precursor RNA can assume a critical conformation enabling it to undergo site-specific autocatalytic cleavage and ligation (self-splicing). By means of site-directed mutation, it has been shown unequivocally that several sequence elements in the Tetrahymena rRNA intron are involved in the formation of base-paired stem structures that are essential for the self-splicing process. These sequence elements have been demonstrated in other eukaryotic group 1 introns, as well as in the td intron. In this brief review we shall describe the biochemical and structural properties of the td intron in relation to other newly found phage introns. The interesting implications arising from these revelations will also be discussed.  相似文献   

11.
Small RNAs capable of self-cleavage and ligation might have been the precursors for the much more complex self-splicing group I and II introns in an early RNA world. Here, we demonstrate the activity of engineered hairpin ribozyme variants, which as self-splicing introns are removed from their parent RNA. In the process, two cleavage reactions are supported at the two intron-exon junctions, followed by ligation of the two generated exon fragments. As a result, the hairpin ribozyme, here acting as the self-splicing intron, is cut out. Two self-splicing hairpin ribozyme variants were investigated, one designed by hand, the other by a computer-aided approach. Both variants perform self-splicing, generating a cut-out intron and ligated exons.  相似文献   

12.
There are four major classes of introns: self-splicing group I and group II introns, tRNA and/or archaeal introns and spliceosomal introns in nuclear pre-mRNA. Group I introns are widely distributed in protists, bacteria and bacteriophages. Group II introns are found in fungal and land plant mitochondria, algal plastids, bacteria and Archaea. Group II and spliceosomal introns share a common splicing pathway and might be related to each other. The tRNA and/or archaeal introns are found in the nuclear tRNA of eukaryotes and in archaeal tRNA, rRNA and mRNA. The mechanisms underlying the self-splicing and mobility of a few model group I introns are well understood. By contrast, the role of these highly distinct processes in the evolution of the 1500 group I introns found thus far in nature (e.g. in algae and fungi) has only recently been clarified. The explosion of new sequence data has facilitated the use of comparative methods to understand group I intron evolution in a broader context and to generate hypotheses about intron insertion, splicing and spread that can be tested experimentally.  相似文献   

13.
R B Waring  R W Davies 《Gene》1984,28(3):277-291
A widespread class of introns is characterized by a particular RNA secondary structure, based upon four conserved nucleotide sequences. Among such "class I" introns are found the majority of introns in fungal mitochondrial genes and the self-splicing intron of the large ribosomal RNA of several species of Tetrahymena. A model of the RNA secondary structure, which must underlie the self-splicing activity, is here evaluated in the light of data on 16 further introns. The main body or "core structure" of the intron always consists of the base-paired regions P3 to P9 with the associated single-stranded loops, with P2 present also in most cases. Two minority sub-classes of core structure occur, one of which is typical of introns in fungal ribosomal RNA. Introns in which the core structure is close to the 5' splice site all have an internal guide sequence (IGS) which can pair with exon sequences adjacent to the 5' and 3' splice sites to align them precisely, as proposed by Davies et al. [Nature 300 (1982) 719-724]. In these cases, the internal guide model allows us to predict correctly the exact location of splice sites. All other introns probably use other mechanisms of alignment. This analysis provides strong support for the RNA splicing model which we have developed.  相似文献   

14.
15.
RNA containing the aI3 group I intron of the yeast mitochondrial gene encoding cytochrome oxidase subunit I shows self-splicing in vitro. The excised intron, comprising 1514 nucleotides, is partially split into an upstream portion, containing the intronic reading frame, and a downstream portion, containing the typical group I conserved sequence elements. Full-length intron RNA and intron parts occur in linear and circular form. In the transesterification reactions leading to circle formation, only the guanosine nucleotide added during splicing is removed. Reincubation of isolated, complete circular intron RNA under self-splicing conditions leads to formation of free subintronic RNA circles. Under similar conditions, purified linear intron RNA gives rise to a number of circular and linear products, one of which consists of interlocked subintronic RNA circles. These observations suggest that the intron RNA possesses a dynamic structure in which subtle alterations in folding result in the formation of RNA products with different topology.  相似文献   

16.
Agarwal V  Lal P  Pruthi V 《Mycopathologia》2008,165(1):13-19
The inhibitory effect of 30 plant oils was evaluated against biofilm forming Candida albicans strain (CA I) isolated from clinical samples, which was sensitive to 4 μg/ml of fluconazole, used as a positive control. The standard strain (MTCC 227, CA II) used in this study was found to be highly resistant to fluconazole, 3,000 μg/ml of which was required to inhibit the growth of this strain partially, and complete inhibition could not be achieved. Eighteen among the 30 plant oils tested were found to show anti-Candida activity by disc diffusion assay. Effective plant oils were assessed using XTT (2, 3-bis [2-Methoxy-4-nitro-5-sulphophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay for biofilm quantification. Four oils eucalyptus, peppermint, ginger grass and clove showed 80.87%, 74.16%, 40.46% and 28.57% biofilm reduction respectively. Minimum inhibitory concentration (MIC) values were calculated using agar dilution assay. Scanning electron microscopic (SEM) analysis further revealed reduction in C. albicans biofilm in response to effective oils. The substantial antifungal activity shown by these plant oils suggests their potential against infections caused by C. albicans.  相似文献   

17.
Inhibition of In Vitro Splicing of a Group I Intron of Pneumocystis carinii   总被引:4,自引:0,他引:4  
Unlike its mammalian hosts, the opportunistic fungal pathogen Pneumocystis carinii harbors group I self-splicing introns in its chromosomal genes encoding rRNA. This difference between pathogen and host suggests that intron splicing is a promising target for chemotherapy. We have found that intron splicing in vitro is inhibited by the anti- Pneumocystis agent pentamidine and by a series of pentamidine analogues, as well as by some aminoglycosides, tetracycline, L-arginine and ethidium bromide. Further studies will be needed to determine if this is the mechanism of action of pentamidine against P. carinii .  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号