首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
You F  Ren W  Gu S  Wang W  Zhou L  Zhang Y  Gan W  Chen M 《Gene》2012,504(1):13-21
The finless porpoise (Neophocaena phocaenoides) is one of the smallest cetacean species. Research into the immune system of the finless porpoise is essential to the protection of this species, but, to date, no genes coding for proteins from the tumor necrosis factor family (TNF family) have yet been reported from finless porpoises. The TNF B cell activating factor (BAFF) is critical to B cell survival, proliferation, maturation, and immunoglobulin secretion and to T cell activation. It acts through its three receptors, BAFF-R, BCMA, and TACI. In the present study, the full-length cDNA of BAFF (designated NpBAFF) from the finless porpoise was cloned using RT-PCR and rapid amplification of cDNA ends (RACE) techniques, and its biological activities have been characterized. To our knowledge, this is the first report of any BAFF gene being cloned from an aquatic mammal. The full-length cDNA of NpBAFF consists of 1502 bases including an 852 bp open reading frame encoding 283 amino acids. This protein was found to contain a predicted transmembrane domain, a putative furin protease cleavage site, and a typical TNF homology domain corresponding to other, known BAFF homologues. Sequence comparison indicated that the amino acid sequence of NpBAFF was very similar to its bovine (87.68%), porcine (76.33%), hircine (87.68%) and canine (82.19%) counterparts. The predicted three-dimensional (3D) structure of the NpsBAFF monomer, analyzed by comparative protein modeling, revealed that it was very similar to its human counterpart. Phylogenetic analysis indicated that NpBAFF showed a notable homology with Artiodactyla BAFFs. The SUMO-NpsBAFF was efficiently expressed in Escherichia coli BL21 (DE3) and confirmed by SDS-PAGE and Western blot analysis. Laser scanning confocal microscopy analysis showed that NpsBAFF could bind to its receptors on B cells. In vitro, MTT assays indicated that SUMO-NpsBAFF could promote the survival or proliferation of mouse splenic B cells grown with anti-mouse IgM. These findings indicate that NpBAFF plays an important role in the survival or proliferation of B cells and has functional cross-reactivity among cetaceans and other mammals. The present findings may provide valuable information for research into the immune system of the finless porpoise.  相似文献   

2.
Luo CH  Ai HX  Zhou XM  Min C  Liang ZN  Zhang JX  Song R  Liu MY  Zhang SQ 《Gene》2011,485(2):63-68
A proliferation-inducing ligand (APRIL) is an important member of the tumor necrosis factor (TNF) superfamily. In the present study, a novel cDNA was isolated from the spleen of goat by RT-PCR and designated as goat APRIL (gAPRIL). The open reading frame (ORF) of this cDNA covered 753 bp, encoding a protein of 250 amino acids. Sequence comparison showed that gAPRIL contains a predicted transmembrane domain, a putative furin protease cleavage site, and two cysteine residues, which are the typical characteristics of TNF gene in mammals. The predicted three dimensional (3D) structure of soluble part of the gAPRIL (gsAPRIL) monomer analyzed by comparative protein modeling revealed that it is very similar to its counterparts. Real-time PCR analysis revealed that gAPRIL was constitutively expressed in various tissues. Recombinant gsAPRIL fused with NusA tag was efficiently produced in Escherichia coli BL21 (DE3) and then analyzed by the SDS-PAGE as well as western blot. Laser scanning confocal microscopy analysis showed gsAPRIL could bind to its receptors. In vitro, the MTT and flow cytometric methods revealed that purified gsAPRIL protein was not only able to promote survival/proliferation of goat splenocytes, but also able to stimulate survival/proliferation of mouse B cells. These results indicated that gAPRIL plays an important role in survival/proliferation of goat splenocytes and provided a basis for investigating its potential to be used as an immunoadjuvant for enhancing vaccine efficacy and as an immunotherapeutic in goats.  相似文献   

3.
A proliferation-inducing ligand (APRIL) is a critical member of the tumor necrosis factor (TNF) superfamily, which is involved in immune regulation. In the present study, the cDNA of cat APRIL (cAPRIL) was successfully amplified. Sequence analysis showed that the open reading frame (ORF) of cAPRIL contains a putative furin protease cleavage site (R-R-K-R), a conserved putative N-glycosylation site (Asn124), and two conservative cysteine residues (Cys196 and Cys211). Real-time quantitative PCR (qPCR) analysis revealed that cAPRIL could be detected in various tissues. The phylogenetic analysis and predicted three dimensional (3D) structure revealed that it is similar to its counterparts. The extracellular soluble domain of the cAPRIL (csAPRIL) fragment was cloned into the expression vector pET43.1a. SDS-PAGE and Western blotting analysis indicated a high-level expression of csAPRIL protein in Escherichia coli BL21 (DE3). MTT assays revealed that purified recombinant csAPRIL protein was able to stimulate proliferation of mouse B-cells. These findings indicate that cAPRIL plays an important role in proliferation of B-cells and provide the basis for investigation on the roles of APRIL in this important domestic species.  相似文献   

4.
5.
Min C  Han Y  Liu H  Chen Y  Zhang S  Yao Z  Ding Y 《Gene》2012,505(2):233-239
B cell activating factor (BAFF), a member of the TNF family, is a critical cytokine for the survival, proliferation, maturation, and differentiation of B cells. In the present study, Père David's deer BAFF (miBAFF) was amplified from Elaphurus davidianus using RT-PCR. This is the first BAFF cloned from a member of Cervidae family. The open reading frame (ORF) of the miBAFF cDNA consists of 843 bases that encode a 280-amino acid protein bearing typical TNF homology domain. Sequence alignment shows that miBAFF shares 39.3%-97% sequence homology with the BAFF sequences of other mammals. Comparative protein modeling predicted that the 3D structure of the soluble mature portion of miBAFF (misBAFF) is very similar to that of human BAFF (hsBAFF). Recombinant misBAFF fused to a SUMO-tag was efficiently expressed in Escherichia coli BL21 (DE3) cells. The protein molecular weight of ~36 KDa was determined using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting. In vitro, purified misBAFF was shown to promote the survival and proliferation of Père David's deer peripheral blood lymphocytes and mouse B cells. These results indicate that miBAFF plays an important role in the survival/proliferation of mouse B cells and, shows highly conserved evolutionarily, leading to functional cross-reactivity that exists between mouse and Père David's deer BAFF.  相似文献   

6.
B-cell activating factor of the TNF family (BAFF) induces B-cell survival, proliferation, immunoglobulin secretion and plays a role in enhancing immune responses. In the present study, a BAFF homolog has been identified in mefugu Takifugu obscurus, and its biological activities have been characterized. The mefugu BAFF (fBAFF) cDNA is 789 bp in length and translates into a 262-aa protein. The fBAFF genomic sequence consists of six exons and five introns, is approximately 1.8 kb in size. Amino acid sequence comparison indicated that fBAFF possessed the TNF signatures, a transmembrane domain, a putative furin protease cleavage site and three cysteine residues, which were the typical characteristics of TNF gene in mammals and birds. The predicted three-dimensional (3D) structure of the fsBAFF monomer analyzed by comparative protein modeling revealed that it was very similar to its human counterpart. Real-time quantitative PCR (qPCR) analysis revealed that fBAFF was predominantly expressed in mefugu lymphoid tissue spleen. The SUMO-fsBAFF and GFP/fsBAFF efficiently expressed in Escherichia coli Rosetta (DE3) were confirmed by SDS-PAGE and Western blotting analysis. After purification, the GFP/fsBAFF fusion protein obtained similar fluorescence spectrum to those of GFP. Laser scanning confocal microscopy analysis showed GFP/fsBAFF could bind to its receptors. In vitro, the MTT assays and flow cytometric analysis indicated that SUMO-fsBAFF could promote the proliferation of mefugu splenocytes or mouse splenic B cells together with/without anti-mouse IgM. These findings indicate that SUMO-fsBAFF plays an important role in proliferation of mefugu B cells and has functional cross-reactivity among mefugu and other mammalians. Therefore, BAFF may be a potential immunologic factor for enhancing immunological efficacy in fish.  相似文献   

7.
8.
9.
B-cell maturation protein (BCMA) is a member of the tumor necrosis factor (TNF) receptor family and is expressed in B lymphocytes. BCMA binds two TNF family members, BAFF and APRIL, that stimulate cellular proliferation. BAFF in particular has been shown to influence B-cell survival and activation, and transgenic mice overexpressing BAFF have a lupus-like autoimmune disorder. We have inactivated BCMA in the mouse germ line. BCMA(-/-) mice have normal B-cell development, and the life span of mutant B lymphocytes is comparable to that of wild-type B cells. The humoral immune responses of BCMA(-/-) mice to T-cell-independent antigens as well as high and low doses of T-cell-dependent antigens are also intact. In addition, mutant mice have normal splenic architecture, and germinal centers are formed during an ongoing immune response. These data suggest a functional redundancy of BCMA in B-cell physiology that is probably due to the presence of TACI, another TNF receptor family member that is expressed on B cells and that can also bind BAFF and APRIL.  相似文献   

10.
增殖诱导配体 (aproliferation inducingligand ,APRIL)是肿瘤坏死因子 (TNF)家族的新成员 ,在多种肿瘤组织中有高表达 ,能促进肿瘤细胞增殖 ,防止肿瘤细胞受CD95L、FasL等诱导的凋亡 ;调节体液免疫 ;并在T、B淋巴细胞的成熟和活化中起一定作用。因此 ,APRIL与肿瘤的发生、发展以及免疫系统的调节有密切关系。  相似文献   

11.
B cell activating factor (BAFF), a ligand belonging to the tumor necrosis factor (TNF) family, plays a critical role in regulating survival and activation of peripheral B cell populations and has been associated with autoimmune disease. BAFF is known to interact with three receptors, BCMA, TACI and BAFF-R, that have distant similarities with other receptors of the TNF family. We have determined the crystal structure of the TNF-homologous domain of BAFF at 2.8 A resolution. The structure reveals significant differences when compared to other TNF family members, including an unusually long D-E loop that participates in the formation of a deep, concave and negatively charged region in the putative receptor binding site. The BAFF structure was further used to generate a homology model of APRIL, a closely related TNF family ligand that also binds to BCMA and TACI, but not BAFF-R. Analysis of the putative receptor binding sites of BAFF and APRIL suggests that differences in the D-E loop structure and electrostatic surface potentials may be important for determining binding specificities for BCMA, TACI and BAFF-R.  相似文献   

12.
13.
A proliferation-inducing ligand (APRIL) is a member of the tumor necrosis factor (TNF) ligand superfamily and has a proliferative effect on both normal and tumor cells. The TNF family receptors (B-cell maturation antigen (BCMA), transmembrane activator and CAML-interactor (TACI), and BAFF receptor-3 (BR3)) for APRIL and the closely related ligand, B-cell activating factor of the TNF family (BAFF), bind these ligands through a highly conserved six residue DXL motif ((F/Y/W)-D-X-L-(V/T)-(R/G)). Panning peptide phage display libraries led to the identification of several novel classes of APRIL-binding peptides, which could be grouped by their common sequence motifs. Interestingly, only one of these ten classes consisted of peptides containing the DXL motif. Nevertheless, all classes of peptides prevented APRIL, but not BAFF, from binding BCMA, their shared receptor. Synthetic peptides based on selected sequences inhibited APRIL binding to BCMA with IC50 values of 0.49-27 μM. An X-ray crystallographic structure of APRIL bound to one of the phage-derived peptides showed that the peptide, lacking the DXL motif, was nevertheless bound in the DXL pocket on APRIL. Our results demonstrate that even though a focused, highly conserved motif is required for APRIL-receptor interaction, remarkably, many novel and distinct classes of peptides are also capable of binding APRIL at the ligand receptor interface.  相似文献   

14.
BAFF (BLyS) and APRIL are TNF-like cytokines that support survival and differentiation of B cells. Recent studies have discovered a role for BAFF in augmenting both innate and adaptive immune responses as well as in collaborating with other inflammatory cytokines to promote the activation and differentiation of effector immune cells. BAFF is an important pathogenic factor in lupus mouse models and BAFF inhibition successfully delays disease onset in these mice, although the responsiveness to BAFF inhibition varies among different strains. These results have led to the development of inhibitors targeting BAFF and APRIL in humans. An anti-BAFF antibody has shown significant but modest efficacy in two Phase III clinical trials for moderately active SLE and other inhibitors are being developed or at early stages of clinical testing.  相似文献   

15.
为了阐明免疫刺激诱导草鱼肿瘤坏死因子TNF-的体外表达特征, 克隆了草鱼TNF-的cDNA, 构建了原核表达载体pET-32-TNF-, 并在大肠杆菌DH5中表达了His6-TNF-。利用亲和层析镍柱纯化表达重组蛋白后将其作为免疫原免疫小鼠制备了抗草鱼TNF-多克隆抗体。免疫印迹实验显示, 制备的抗体能特异性识别细胞内源性TNF-。在此基础上, 分别研究了GCRV(草鱼呼肠孤病毒)感染、免疫刺激物Poly(I:C)及LPS处理下不同时间点草鱼肾细胞CIK中TNF-的表达情况, 结果表明, TNF-在草鱼肾细胞内翻译水平的表达量基本保持稳定。研究显示经典的TNF信号通路激活因子不能引起CIK细胞内TNF-蛋白水平的显著变化。  相似文献   

16.
人可溶性APRIL基因的克隆、表达及生物学活性检测   总被引:3,自引:0,他引:3  
为探索人可溶性增殖诱导配体 (sAPRIL)在多种肿瘤细胞的增殖和存活以及促肿瘤形成中的作用 ,用RT PCR从扁桃体总RNA中扩增出人sAPRIL基因 .经克隆测序后进行同源性比较 ,证实所克隆的基因即为sAPRIL .将克隆载体经酶切并构建表达载体 ,在大肠杆菌中表达 ,表达量达4 3 6 % .纯化蛋白后进行3 H TdR参入实验 ,表明sAPRIL有明显促进肿瘤的形成及肿瘤细胞的增殖与存活的作用 .  相似文献   

17.
NF-κB essential modulator (NEMO) and cylindromatosis protein (CYLD) are intracellular proteins that regulate the NF-κB signaling pathway. Although mice with either CYLD deficiency or an alteration in the zinc finger domain of NEMO (K392R) are born healthy, we found that the combination of these two gene defects in double mutant (DM) mice is early embryonic lethal but can be rescued by the absence of TNF receptor 1 (TNFR1). Notably, NEMO was not recruited into the TNFR1 complex of DM cells, and consequently NF-κB induction by TNF was severely impaired and DM cells were sensitized to TNF-induced cell death. Interestingly, the TNF signaling defects can be fully rescued by reconstitution of DM cells with CYLD lacking ubiquitin hydrolase activity but not with CYLD mutated in TNF receptor-associated factor 2 (TRAF2) or NEMO binding sites. Therefore, our data demonstrate an unexpected non-catalytic function for CYLD as an adapter protein between TRAF2 and the NEMO zinc finger that is important for TNF-induced NF-κB signaling during embryogenesis.  相似文献   

18.
Here we describe the identification of the hedgehog Erinaceus europaeus homologue of a proliferation-inducing ligand (APRIL) of the TNF family (designated heAPRIL). Hedgehog APRIL contains two cysteine residues (Cys196 and Cys211), a furin protease cleavage site and a conserved putative N-glycosylation site (Asn124). Real-time quantitative PCR (qPCR) analysis revealed that heAPRIL could be detected in various tissues. MTT assays and flow cytometric analysis revealed that Nus-hesAPRIL and hesAPRIL could promote the survival/proliferation of splenic B cells. Laser scanning confocal microscopy analysis showed GFP-hesAPRIL could successfully bind to the APRIL receptors of lymphocytes.  相似文献   

19.
Dendritic cells (DCs) are potent antigen-presenting cells (APCs). Among so-called professional APCs, only DCs can activate naive T cells to initiate immune response. To better understand molecular mechanisms underlying unique functions of DCs, we searched for genes specifically expressed in human DCs, using PCR-based cDNA subtraction in conjunction with differential screening. cDNAs generated from CD34(+) stem cell-derived CD1a(+) DC were subtracted with cDNA from monocytes and used for generation of a cDNA library. The cDNA library was differentially screened to select genes expressed in DCs more abundantly than in monocytes. We identified a gene encoding a protein composed of 244 amino acids, which we designated as DCNP1 (dendritic cell nuclear protein 1). In Northern blot analysis, DCNP1 mRNA was highly expressed in mature DCs and at a lower level in immature DCs. In contrast, monocytes and B cells do not express the gene. In multiple human tissue Northern blot analysis, expression of DCNP1 was detected in brain and skeletal muscle. To examine subcellular localization of DCNP1, we performed immunofluorescence analysis using an anti-DCNP1 polyclonal antibody and found the molecule to be localized mainly in the perinucleus. In an immunohistochemical analysis, we compared the expression of DCNP1 with CD68, a marker for DCs and macrophages, in spleen, lymph node, liver, and brain. While DCNP1-positive cells showed a similar tissue distribution to CD68-positive cells, the number of DCNP1-positive cells was much smaller than that of CD68-positive cells. Our findings are consistent with the proposal that DCNP1 is specifically expressed in DCs.  相似文献   

20.
A proliferation inducing ligand (APRIL) is a member of the TNF superfamily. It shares two receptors with B-cell activating factor (BAFF), B-cell maturation antigen (BCMA), and transmembrane activator and CAML interactor (TACI). Herein, the equine APRIL was identified from equine adipose-derived stem cell (ASC), and the protein expression of APRIL and its related molecules were detected during the adipogenic differentiation of equine ASC in vitro. The equine APRIL gene was located on chromosome 11, spans 1852 base pairs (bp). Its open reading frame covers 753 bp, encoding a 250-amino acid protein with the typical TNF structure domain. During the two weeks’ adipogenic differentiation of equine ASC, although the protein expression of APRIL and TACI had an insignificant change, that of BCMA increased significantly. Moreover, with the addition of recombinant protein His6-sAPRIL, a reduced differentiation of equine ASC toward adipocyte was detected. These results may provide the basis for investigating the role of APRIL in ASC adipogenic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号