首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We deployed sediment traps adjacent to two active hydrothermal vents at 9°50'N on the East Pacific Rise (EPR) to assess the variability in bacterial community structure associated with plume particles on the timescale of weeks to months, to determine whether an endemic population of plume microbes exists, and to establish ecological relationships between bacterial populations and vent chemistry. Automated rRNA intergenic spacer analysis (ARISA) indicated that there are separate communities at the two different vents and temporal community variations between each vent. Correlation analysis between chemistry and microbiology indicated that shifts in the coarse particulate (>1 mm) Fe/(Fe+Mn+Al), Cu, V, Ca, Al, (232) Th, and Ti as well as fine-grained particulate (<1 mm) Fe/(Fe+Mn+Al), Fe, Ca, and Co are reflected in shifts in microbial populations. 16S rRNA clone libraries from each trap at three time points revealed a high percentage of Epsilonproteobacteria clones and hyperthermophilic Aquificae. There is a shift toward the end of the experiment to more Gammaproteobacteria and Alphaproteobacteria, many of whom likely participate in Fe and S cycling. The particle-attached plume environment is genetically distinct from the surrounding seawater. While work to date in hydrothermal environments has focused on determining the microbial communities on hydrothermal chimneys and the basaltic lavas that form the surrounding seafloor, little comparable data exist on the plume environment that physically and chemically connects them. By employing sediment traps for a time-series approach to sampling, we show that bacterial community composition on plume particles changes on timescales much shorter than previously known.  相似文献   

2.
The vertical distribution of magnetotactic bacteria along various physico-chemical gradients in freshwater microcosms was analyzed by a combined approach of viable cell counts, 16S rRNA gene analysis, microsensor profiling and biogeochemical methods. The occurrence of magnetotactic bacteria was restricted to a narrow sediment layer overlapping or closely below the maximum oxygen and nitrate penetration depth. Different species showed different preferences within vertical gradients, but the largest proportion (63-98%) of magnetotactic bacteria was detected within the suboxic zone. In one microcosm the community of magnetotactic bacteria was dominated by one species of a coccoid "Alphaproteobacterium", as detected by denaturing gradient gel electrophoresis in sediment horizons from 1 to 10 mm depth. Maximum numbers of magnetotactic bacteria were up to 1.5 x 10(7) cells/cm3, which corresponded to 1% of the total cell number in the upper sediment layer. The occurrence of magnetotactic bacteria coincided with the availability of significant amounts (6-60 microM) of soluble Fe(II), and in one sample with hydrogen sulfide (up to 40 microM). Although various trends were clearly observed, a strict correlation between the distribution of magnetotactic bacteria and individual geochemical parameters was absent. This is discussed in terms of metabolic adaptation of various strains of magnetotactic bacteria to stratified sediments and diversity of the magnetotactic bacterial communities.  相似文献   

3.
The bacterial community composition in small streams and a river in central Germany was examined by temperature gradient gel electrophoresis (TGGE) with PCR products of 16S rRNA gene fragments and sequence analysis. Complex TGGE band patterns suggested high levels of diversity of bacterial species in all habitats of these environments. Cluster analyses demonstrated distinct differences among the communities in stream and spring water, sandy sediments, biofilms on stones, degrading leaves, and soil. The differences between stream water and sediment were more significant than those between sites within the same habitat along the stretch from the stream source to the mouth. TGGE data from an entire stream course suggest that, in the upper reach of the stream, a special suspended bacterial community is already established and changes only slightly downstream. The bacterial communities in water and sediment in an acidic headwater with a pH below 5 were highly similar to each other but deviated distinctly from the communities at the other sites. As ascertained by nucleotide sequence analysis, stream water communities were dominated by Betaproteobacteria (one-third of the total bacteria), whereas sediment communities were composed mainly of Betaproteobacteria and members of the Fibrobacteres/Acidobacteria group (each accounting for about 25% of bacteria). Sequences obtained from bacteria from water samples indicated the presence of typical cosmopolitan freshwater organisms. TGGE bands shared between stream and soil samples, as well as sequences found in bacteria from stream samples that were related to those of soil bacteria, demonstrated the occurrence of some species in both stream and soil habitats. Changes in bacterial community composition were correlated with geographic distance along a stream, but in comparisons of different streams and rivers, community composition was correlated only with environmental conditions.  相似文献   

4.
Municipal sewage, urban runoff and accidental oil spills are common sources of pollutants in urban mangrove forests and may have drastic effects on the microbial communities inhabiting the sediment. However, studies on microbial communities in the sediment of urban mangroves are largely lacking. In this study, we explored the diversity of bacterial communities in the sediment of three urban mangroves located in Guanabara Bay (Rio de Janeiro, Brazil). Analysis of sediment samples by means of denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments suggested that the overall bacterial diversity was not significantly affected by the different levels of hydrocarbon pollution at each sampling site. However, DGGE and sequence analyses provided evidences that each mangrove sediment displayed a specific structure bacterial community. Although primer sets for Pseudomonas, alphaproteobacterial and actinobacterial groups also amplified ribotypes belonging to taxa not intended to be enriched, sequence analyses of dominant DGGE bands revealed ribotypes related to Alteromonadales, Burkholderiales, Pseudomonadales, Rhodobacterales and Rhodocyclales. Members of these groups were often shown to be involved in aerobic or anaerobic degradation of hydrocarbon pollutants. Many of these sequences were only detected in the sampling sites with high levels of anthropogenic inputs of hydrocarbons. Many dominant DGGE ribotypes showed low levels of sequence identity to known sequences, indicating a large untapped bacterial diversity in mangrove ecosystems.  相似文献   

5.
Biogeochemical changes in marine sediments during coastal water hypoxia are well described, but less is known about underlying changes in microbial communities. Bacterial and archaeal communities in Louisiana continental shelf (LCS) hypoxic zone sediments were characterized by pyrosequencing 16S rRNA V4‐region gene fragments obtained by PCR amplification of community genomic DNA with bacterial‐ or archaeal‐specific primers. Duplicate LCS sediment cores collected during hypoxia had higher concentrations of Fe(II), and dissolved inorganic carbon, phosphate, and ammonium than cores collected when overlying water oxygen concentrations were normal. Pyrosequencing yielded 158 686 bacterial and 225 591 archaeal sequences from 20 sediment samples, representing five 2‐cm depth intervals in the duplicate cores. Bacterial communities grouped by sampling date and sediment depth in a neighbor‐joining analysis using Chao–Jaccard shared species values. Redundancy analysis indicated that variance in bacterial communities was mainly associated with differences in sediment chemistry between oxic and hypoxic water column conditions. Gammaproteobacteria (26.5%) were most prominent among bacterial sequences, followed by Firmicutes (9.6%), and Alphaproteobacteria (5.6%). Crenarchaeotal, thaumarchaeotal, and euryarchaeotal lineages accounted for 57%, 27%, and 16% of archaeal sequences, respectively. In Thaumarchaeota Marine Group I, sequences were 96–99% identical to the Nitrosopumilus maritimus SCM1 sequence, were highest in surficial sediments, and accounted for 31% of archaeal sequences when waters were normoxic vs. 13% of archaeal sequences when waters were hypoxic. Redundancy analysis showed Nitrosopumilus‐related sequence abundance was correlated with high solid‐phase Fe(III) concentrations, whereas most of the remaining archaeal clusters were not. In contrast, crenarchaeotal sequences were from phylogenetically diverse lineages, differed little in relative abundance between sampling times, and increased to high relative abundance with sediment depth. These results provide further evidence that marine sediment microbial community composition can be structured according to sediment chemistry and suggest the expansion of hypoxia in coastal waters may alter sediment microbial communities involved in carbon and nitrogen cycling.  相似文献   

6.
【目的】为了解东太平洋中国多金属结核勘探合同区西区2个站位(WBC1305和WBC1316A)深海沉积物细菌群多样性。【方法】直接提取环境样品总基因组,通过PCR和TA克隆策略构建了2个站位6个层次16S r RNA基因文库,对2个站位沉积物表层泥样中细菌多样性和群落结构特征进行分析,并通过构建系统发育树,进行系统发育学分析。【结果】2个站位6个文库共获得有效克隆533个,其中472个克隆包括α-变形菌纲、β-变形菌纲、γ-变形菌纲、δ-变形菌纲、浮霉菌门、酸杆菌门、硝化螺旋菌门、放线菌门、绿弯菌门、厚壁菌门、拟杆菌门、迷踪菌门、芽单胞菌门、Hydrogenedentes、Chlorobi和Nitrospinae16个细菌类群,而另外61个克隆为不可分类细菌类群。【结论】结果表明γ-变形菌纲和厚壁菌门分别是WBC1305和WBC1316A站位的优势种群;WBC1316A站位细菌群落结构更加丰富和复杂。  相似文献   

7.
Arsenic contamination in groundwater has been reported in the Jianghan Plain of China since 2005, yet little is known about the microbial communities involved in As mobilization in this area, especially the dissimilatory arsenate-reducing bacteria (DARB) communities. Here, we conducted a cultivation-independent investigation on core sediments collected from a region with arsenic-contaminated groundwater in the Jianghan Plain to reveal the total bacteria and DARB community structures. Highly diverse As-resistant bacteria communities were found from sediment samples via high-throughput sequencing of 16S rRNA genes. Notably, we identified 27 unique arrA gene (encoding the alpha subunit of dissimilatory arsenate reductase) phylotypes, none of which was related to any previously described arrA gene sequence. This suggests a novel and unique DARB community in the sediments of the Jianghan Plain and expands our knowledge about the distribution and diversity of this group of bacteria in natural environments. Moreover, RDA and CCA demonstrated that total bacterial communities and specific functional groups are controlled by different environmental factors. Specifically, sediment pH, NH4+, total nitrogen, total Fe, total organic carbon and total phosphorus were the key factors driving total bacterial community compositions, while As significantly shaped DARB community structures. This report is the first to describe DARB communities and their correlation with environmental factors in Jianghan Plain sediments, which could give us clues about the origin of the arsenic contamination of groundwater in this region.  相似文献   

8.
To determine if there is a core microbial community in the microbial populations of different wastewater treatment plants (WWTPs) and to investigate the effects of wastewater characteristics, operational parameters, and geographic locations on microbial communities, activated sludge samples were collected from 14 wastewater treatment systems located in 4 cities in China. High-throughput pyrosequencing was used to examine the 16S rRNA genes of bacteria in the wastewater treatment systems. Our results showed that there were 60 genera of bacterial populations commonly shared by all 14 samples, including Ferruginibacter, Prosthecobacter, Zoogloea, Subdivision 3 genera incertae sedis, Gp4, Gp6, etc., indicating that there is a core microbial community in the microbial populations of WWTPs at different geographic locations. The canonical correspondence analysis (CCA) results showed that the bacterial community variance correlated most strongly with water temperature, conductivity, pH, and dissolved oxygen (DO) content. Variance partitioning analyses suggested that wastewater characteristics had the greatest contribution to the bacterial community variance, explaining 25.7% of the variance of bacterial communities independently, followed by operational parameters (23.9%) and geographic location (14.7%). Results of this study provided insights into the bacterial community structure and diversity in geographically distributed WWTPs and discerned the relationships between bacterial community and environmental variables in WWTPs.  相似文献   

9.
Microbial communities in Calyptogena sediment and microbial mats of Sagami Bay, Japan, were characterized using 16S rRNA gene sequencing and lipid biomarker analysis. Characterization of 16S rRNA gene isolated from these samples suggested a predominance of bacterial phylotypes related to Gammaproteobacteria (57-64%) and Deltaproteobacteria (27-29%). The Epsilonproteobacteria commonly found in cold seeps and hydrothermal vents were only detected in the microbial mat sample. Significantly different archaeal phylotypes were found in Calyptogena sediment and microbial mats; the former contained only Crenarchaeota clones (100% of the total archaeal clones) and the latter exclusively Euryarchaeota clones, including the anaerobic oxidation of methane archaeal groups ANME-2a and ANME-2c. Many of these lineages are as yet uncultured and undescribed groups of bacteria and archaea. Phospholipid fatty acid analysis suggested the presence of sulphate-reducing and sulphur-oxidizing bacteria. Results of intact glyceryl dialkyl glyceryl tetraether lipid analysis indicated the presence of nonthermophilic marine planktonic archaea. These results suggest that the microbial community in the Sagami Bay seep site is distinct from previously characterized cold-seep environments.  相似文献   

10.
The microbial community of a deep (to 234 m below the sea floor) sediment gas hydrate deposit (Cascadia Margin Ocean Drilling Program Site 889/890, Leg 146) was analysed for the first time by molecular genetic techniques. Both bacterial and methanogen diversity were determined by phylogenetic analysis of ribosomal DNA sequences. High molecular mass DNA, indicative of active bacteria, was present in all of the samples. Ribosomal RNA genes were amplified from extracted DNA extracted from sediment using bacteria, and methanogen specific PCR primers, the latter designed in this study. Phylogenetic analysis of approximately 400 bacterial clones demonstrated that 96% were members of the Proteobacteria. These clones were affiliated with the alpha, beta and gamma subdivisions, with Caulobacter (Zymomonas group), Ralstonia and Pseudomonas phylotypes predominating. The methanogen clones were of low diversity and clustered in three sub-groups. Two of these sub-groups (contained 96% of the 400 clones) were closely related to Methanosarcina mazeii, while the third sub-group clustered in the Methanobacteriales. This analysis of a deep sediment gas hydrate environment shows a bacteria and methanogen community of limited diversity and confirms that the gas hydrate zone is biogeochemically active. These results are consistent with the presence of bacterial populations capable of methanogenesis throughout the core, and suggest that the methane hydrate at this site is at least partially biogenic in origin.  相似文献   

11.
Bacterioplankton community compositions in the Dongjiang River were characterized using denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone library construction. Water samples in nine different sites were taken along the mainstem and three tributaries. In total, 24 bands from DGGE gels and 406 clones from the libraries were selected and sequenced, subsequently analyzed for the bacterial diversity and composition of those microbial communities. Bacterial 16S rRNA gene sequences from freshwater bacteria exhibited board phylogenetic diversity, including sequences representing the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Bacteriodetes, Verrucomicrobia, and candidate division TM7. Members of Betaproteobacteria group were the most dominant in all sampling sites, followed by Gammaproteobacteria, Alphaproteobacteria, and Actinobacteria. DGGE profiles and the ∫-LIBSHUFF analysis revealed similar patterns of bacterial diversity among most sampling sites, while spatial distribution variances existed in all sites along the river basin. Statistical analysis showed that bacterial species distribution strongly correlated with environmental variables, such as nitrate and ammonia, suggesting that nitrogen nutrients may shape the microbial community structure and composition in the Dongjiang River. This study had important implications for the comparison with other rivers elsewhere and contributed to the growing data set on the factors that structure bacterial communities in freshwater ecosystems.  相似文献   

12.
Water from a continental high-temperature, long-term water-flooded petroleum reservoir in Huabei Oilfield in China was analysed for its bacterial community and diversity. The bacteria were characterized by their 16S rRNA genes. A 16S rRNA gene clone library was constructed from the community DNA, and using restriction fragment length polymorphism analysis, 337 randomly selected clones were clustered with 74 operational taxonomic units. Sequencing and phylogenetic analyses showed that the screened clones were affiliated with Gammaproteobacteria (85.7%), Thermotogales (6.8%), Epsilonproteobacteria (2.4%), low-G+C Gram-positive (2.1%), high-G+C Gram-positive, Betaproteobacteria and Nitrospira (each <1.0%). Thermopilic bacteria were found in the high-temperature water from the flooded petroleum reservoir, as well as mesophilic bacteria such as Pseudomonas-like clones. The mesophilic bacteria were probably introduced into the reservoir as it was being exploited. This work provides significant information on the structure of bacterial communities in high-temperature, long-term water-flooded petroleum reservoirs.  相似文献   

13.
Lithology samples were collected from six sites of a petroleum hydrocarbon-contaminated site in northeast China along a contamination plume. The sulfate-reducing bacteria (SRB) diversity of all samples was analyzed by PCR-DGGE technology. The Shannon-Wiener indexes (1.004–3.665), Simpson indexes (0.516–0.907) and Pielou indexes (0.996–1.004) of all samples were used to characterize the abundances, advantages and evenness of the microbial communities. Additionally, Canoco for Windows 4.5 was utilized to analyze the correlation between dominant SRB and environmental factors. The results showed that the abundance, advantages and evenness of the sulfate-reducing bacterial community changed regularly along the contamination plume direction. The microbial homology of the samples was not high (0.25–0.80), and the dominant bacteria exhibited heteroplasmy. Additionally, the dominant bacteria were identified as uncultured bacteria. Canonical correspondence analysis (CCA) analysis showed that the distribution and structure of SRB communities were not obviously correlated with the concentration of total petroleum hydrocarbons (TPH), dissolved oxygen (DO) and other environmental factors. The results presented herein provide evidence of natural bioremediation in petroleum hydrocarbon-contaminated fields and information that will be useful to bioremediation of other contaminated fields.  相似文献   

14.
The Columbia River estuary is a dynamic system in which estuarine turbidity maxima trap and extend the residence time of particles and particle-attached bacteria over those of the water and free-living bacteria. Particle-attached bacteria dominate bacterial activity in the estuary and are an important part of the estuarine food web. PCR-amplified 16S rRNA genes from particle-attached and free-living bacteria in the Columbia River, its estuary, and the adjacent coastal ocean were cloned, and 239 partial sequences were determined. A wide diversity was observed at the species level within at least six different bacterial phyla, including most subphyla of the class Proteobacteria. In the estuary, most particle-attached bacterial clones (75%) were related to members of the genus Cytophaga or of the alpha, gamma, or delta subclass of the class Proteobacteria. These same clones, however, were rare in or absent from either the particle-attached or the free-living bacterial communities of the river and the coastal ocean. In contrast, about half (48%) of the free-living estuarine bacterial clones were similar to clones from the river or the coastal ocean. These free-living bacteria were related to groups of cosmopolitan freshwater bacteria (beta-proteobacteria, gram-positive bacteria, and Verrucomicrobium spp.) and groups of marine organisms (gram-positive bacteria and alpha-proteobacteria [SAR11 and Rhodobacter spp.]). These results suggest that rapidly growing particle-attached bacteria develop into a uniquely adapted estuarine community and that free-living estuarine bacteria are similar to members of the river and the coastal ocean microbial communities. The high degree of diversity in the estuary is the result of the mixing of bacterial communities from the river, estuary, and coastal ocean.  相似文献   

15.
To examine the bacterial community structure in the Fildes Peninsula, King George Island, Antarctica, we examined the bacterial diversity and community composition of samples collected from lacustrine sediment, marine sediment, penguin ornithogenic sediments, and soils using culture-dependent and culture-independent methods. The 70 strains fell into five groups: Actinobacteria, Bacteroidetes, Firmicutes, Gammaproteobacteria, and Betaproteobacteria. Bacterial diversity at the phylum level detected in Denaturing Gradient Gel Electrophoresis (DGGE) profiles comprised Proteobacteria (including the subphyla Alpha-, Beta-, Gamma-, Deltaproteobacteria), Bacteroidetes, Firmicutes, Chlorobi, and Deinococcus-Thermus. Gammaproteobacteria was identified to be the dominant bacterial subphylum by cultivation and DGGE method. By cluster analysis, the overall structure and composition of bacterial communities in the soil and lacustrine sediment were similar to one another but significantly different from bacterial communities in penguin ornithogenic sediment and marine sediment, which were similar to one another. The majority of 16S rDNA sequences from cultured bacteria were closely related to sequences found in cold environments. In contrast, a minority of 16S rDNA sequences from the DGGE approach were closely related to sequences found in cold environments.  相似文献   

16.
【目的】探究青海湖岸带土壤与沉积物的地化特征与细菌群落对水位扩张的响应。【方法】从岸上至岸下沿垂直青海湖岸带方向,采集距离湖面不同高度土壤(土壤:S1、S2)、岸边不同水深表层沉积物(过渡区:E0、E6、E17)及湖心表层沉积物(沉积物:D1、D2)样品,土壤与沉积物水深(土壤水深表示为负数)从小到大的变化表征岸边土壤被淹水转变为沉积物的过程。采用地球化学分析和16SrRNA基因高通量测序技术,探究岸带土壤与沉积物样品中的地化特征与微生物群落构成。【结果】青海湖水位上升导致的生境转变对岸带土壤与沉积物的理化性质、营养水平、有机碳类型等地化特征产生显著影响。具体表现为,随着水位升高,岸带土壤与沉积物的pH、矿物结合态有机碳含量显著升高,而碳氮比值、可溶性有机碳(dissolved organic carbon,DOC)、颗粒态有机碳含量显著下降。随着水位上升,青海湖岸带被淹没土壤的细菌群落多样性下降,且群落结构发生明显变化。这种变化与环境因子变化密切相关,具体表现为,细菌群落物种丰富度指数和香农多样性指数随着水位上升呈下降趋势;活性金属结合态有机碳含量与细菌群落多样性的变化密切相关;理化...  相似文献   

17.
Bacterial community structure was studied in humus and mineral soils of evergreen broad-leaved forests in Ailaoshan and Xishuangbanna, representing subtropical and tropical ecosystems, respectively, in south-west China using sequence analysis and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes. Clone sequences affiliated to Acidobacteria were retrieved as the predominant bacterial phylum in both forest soils, followed by those affiliated to members of the Proteobacteria, Planctomycete and Verrucomicrobia. Despite higher floristic richness at the Xishuangbanna forest than at the Ailaoshan forest, soil at Xishuangbanna harbored a distinctly high relative abundance of Acidobacteria-affiliated sequences (80% of the total clones), which led to a lower overall bacterial diversity than at Ailaoshan. Bacterial communities in humus and mineral soils of the two forests appeared to be well differentiated, based on 16S rRNA gene phylogeny, and correlations were found between the bacterial T-RFLP community patterns and the organic carbon and nutrient contents of the soil samples. The data reveal that Acidobacteria dominate soil bacterial communities in the evergreen broad-leaved forests studied here and suggest that bacterial diversity may be influenced by soil carbon and nutrient levels, but is not related to floristic richness along the climatic gradient from subtropical to tropical forests in south-west China.  相似文献   

18.
Hydrothermal plumes are hot spots of microbial biogeochemistry in the deep ocean, yet little is known about the diversity or ecology of microorganisms inhabiting plumes. Recent biogeochemical evidence shows that Mn(II) oxidation in the Guaymas Basin (GB) hydrothermal plume is microbially mediated and suggests that the plume microbial community is distinct from deep‐sea communities. Here we use a molecular approach to compare microbial diversity in the GB plume and in background deep seawater communities, and cultivation to identify Mn(II)‐oxidizing bacteria from plumes and sediments. Despite dramatic differences in Mn(II) oxidation rates between plumes and background seawater, microbial diversity and membership were remarkably similar. All bacterial clone libraries were dominated by Gammaproteobacteria and archaeal clone libraries were dominated by Crenarchaeota. Two lineages, both phylogenetically related to methanotrophs and/or methylotrophs, were consistently over‐represented in the plume. Eight Mn(II)‐oxidizing bacteria were isolated, but none of these or previously identified Mn(II) oxidizers were abundant in clone libraries. Taken together with Mn(II) oxidation rates measured in laboratory cultures and in the field, these results suggest that Mn(II) oxidation in the GB hydrothermal plume is mediated by genome‐level dynamics (gene content and/or expression) of microorganisms that are indigenous and abundant in the deep sea but have yet to be unidentified as Mn(II) oxidizers.  相似文献   

19.
黄海海域海洋沉积物细菌多样性分析   总被引:2,自引:1,他引:1  
【背景】海洋独特的环境造就了海洋生物的多样性,海洋沉积物中细菌对海洋环境具有至关重要的作用。【目的】研究陆地土壤和海洋沉积物间细菌群落相似性和差异性,以便更好地认识海洋细菌多样性,深入了解沉积物细菌在海洋环境中的潜在作用。【方法】从中国黄海海域及大连市大黑山脚下分别采集样品,以陆地土壤为对照,采用16SrRNA基因高通量测序技术分析海洋沉积物的细菌群落结构。【结果】海洋沉积物样品中芽孢杆菌纲(Bacilli)、鞘氨醇单胞菌属(Sphingomonas)和芽孢杆菌属(Bacillus)丰度高于陆地土壤样品;海洋沉积物中亚硝化单胞菌(unculturedbacterium f. Nitrosomonadaceae)和厌氧绳菌(uncultured bacterium f. Anaerolineaceae)丰度虽低于陆地土壤,但丰度值也均高于1%;样品分类学统计显示酸杆菌门(Acidobacteria)在海洋沉积物和陆地土壤样品中的序列丰度比例都较大,鞘氨醇单胞菌属(Sphingomonas)在海洋沉积物样品中的序列丰度大于陆地土壤样品。【结论】海洋沉积物细菌多样性可作为海洋环境恢复情况的重要指标,研究为合理开发和利用海洋资源提供理论依据。  相似文献   

20.
Microbial communities in contrasting freshwater marsh microhabitats   总被引:1,自引:0,他引:1  
Heterotrophic microorganisms are widely recognized as crucial components of ecosystems; yet information on their community structure and dynamics in benthic freshwater habitats is notably scarce. Using denaturing gradient gel electrophoresis (DGGE), we determined the composition of bacterial and fungal communities in a freshwater marsh over four seasons. DGGE revealed diverse bacterial communities in four contrasting microhabitats. The greatest compositional differences emerged between water-column and surface-associated bacteria, although communities associated with sediment also differed from those on plant litter and epiphytic biofilms. Sequences of bacterial clones derived from DGGE bands belonged to the Alphaproteobacteria (31%), Actinobacteria (19%) and Bacteriodetes (19%). Betaproteobacteria were notably absent. Fungal clones obtained from leaf litter were mainly Ascomycota , but two members of the Basidiomycota were also identified. Overall, habitat type was the most important factor explaining variation in bacterial communities among samples, whereas temporal patterns in community composition were less pronounced in spite of large seasonal variation in environmental conditions such as temperature. The observed differences among bacterial communities in different microhabitats were not caused by random variation, but rather appeared to be determined by habitat characteristics, as evidenced by largely congruent community profiles of replicate samples taken at 10–100 m distances within the marsh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号