首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure to shiftwork has been associated with multiple health disorders and cognitive impairments in humans. We tested if we could replicate metabolic and cognitive consequences of shiftwork, as reported in humans, in a rat model comparable to 5 wks of non-rotating night shifts. The following hypotheses were addressed: (i) shiftwork enhances body-weight gain, which would indicate metabolic effects; and (ii) shiftwork negatively affects learning of a simple goal-directed behavior, i.e., the association of lever pressing with food reward (instrumental learning), which would indicate cognitive effects. We used a novel method of forced locomotion to model work during the animals' normal resting period. We first show that Wistar rats, indeed, are active throughout a shiftwork protocol. In contrast with previous findings, the shiftwork protocol attenuated the normal weight gain to 76?±?8?g in 5 wks as compared to 123?±?15?g in the control group. The discrepancy with previous work may be explained by the concurrent observation that with our shiftwork protocol rats did not adjust their between-work circadian activity pattern. They maintained a normal level of activity during the “off-work” periods. In the control experiment, rats were kept active during the dark period, normally dominated by activity. This demonstrated that forced activity, per se, did not affect body-weight gain (mean±SEM: 85?±?11?g over 5 wks as compared to 84?±?11?g in the control group). Rats were trained on an instrumental learning paradigm during the fifth week of the protocol. All groups showed equivalent increases in lever pressing from the first (3.8?±?.7) to the sixth (21.3?±?2.4) session, and needed a similar amount of sessions (5.1?±?.3) to reach a learning criterion (≥27 out of 30 lever presses). These results suggest that while on prolonged non-rotating shiftwork, not fully reversing the circadian rhythm might actually be beneficial to prevent body-weight gain and cognitive impairments. (Author correspondence: )  相似文献   

2.
We examined the contribution of the nigrostriatal DA system to instrumental learning and behavior using optogenetics in awake, behaving mice. Using Cre-inducible channelrhodopsin-2 (ChR2) in mice expressing Cre recombinase driven by the tyrosine hydroxylase promoter (Th-Cre), we tested whether selective stimulation of DA neurons in the substantia nigra pars compacta (SNC), in the absence of any natural rewards, was sufficient to promote instrumental learning in naive mice. Mice expressing ChR2 in SNC DA neurons readily learned to press a lever to receive laser stimulation, but unlike natural food rewards the lever pressing did not decline with satiation. When the number of presses required to receive a stimulation was altered, mice adjusted their rate of pressing accordingly, suggesting that the rate of stimulation was a controlled variable. Moreover, extinction, i.e. the cessation of action-contingent stimulation, and the complete reversal of the relationship between action and outcome by the imposition of an omission contingency, rapidly abolished lever pressing. Together these results suggest that selective activation of SNC DA neurons can be sufficient for acquisition and maintenance of a new instrumental action.  相似文献   

3.
Exposure of neonates to oxidative stress may increase the risk of psychiatric disorders such as schizophrenia in adulthood. However, the effects of moderate oxidative stress on the adult brain are not completely understood. To address this issue, we systemically administrated 2-cyclohexen-1-one (CHX) to adult rats to transiently reduce glutathione levels. Repeated administration of CHX did not affect the acquisition or motivation of an appetitive instrumental behavior (lever pressing) rewarded by a food outcome under a progressive ratio schedule. In addition, response discrimination and reversal learning were not affected. However, acute CHX administration blunted the sensitivity of the instrumental performance to outcome devaluation, and this effect was prolonged in rats with a history of repeated CHX exposure, representing pro-depression-like phenotypes. On the other hand, repeated CHX administration reduced immobility in forced swimming tests and blunted acute cocaine-induced behaviors, implicating antidepressant-like effects. Multivariate analyses segregated a characteristic group of behavioral variables influenced by repeated CHX administration. Taken together, these findings suggest that repeated administration of CHX to adult rats did not cause a specific mental disorder, but it induced long-term alterations in behavioral and cognitive functions, possibly related to specific neural correlates.  相似文献   

4.
The suprachiasmatic nucleus (SCN) is the primary circadian pacemaker in mammals that can synchronize or entrain to environmental cues. Although light exerts powerful influences on SCN output, other non-photic stimuli can modulate the SCN as well. We recently demonstrated that daily performance of a cognitive task requiring sustained periods of attentional effort that relies upon basal forebrain (BF) cholinergic activity dramatically alters circadian rhythms in rats. In particular, normally nocturnal rats adopt a robust diurnal activity pattern that persists for several days in the absence of cognitive training. Although anatomical and pharmacological data from non-performing animals support a relationship between cholinergic signaling and circadian rhythms, little is known about how endogenous cholinergic signaling influences SCN function in behaving animals. Here we report that BF cholinergic projections to the SCN provide the principal signal allowing for the expression of cognitive entrainment in light-phase trained animals. We also reveal that oscillator(s) outside of the SCN drive cognitive entrainment as daily timed cognitive training robustly entrains SCN-lesioned arrhythmic animals. Ablation of the SCN, however, resulted in significant impairments in task acquisition, indicating that SCN-mediated timekeeping benefits new learning and cognitive performance. Taken together, we conclude that cognition entrains non-photic oscillators, and cholinergic signaling to the SCN serves as a temporal timestamp attenuating SCN photic-driven rhythms, thereby permitting cognitive demands to modulate behavior.  相似文献   

5.
A biobehavioural analysis of activity anorexia suggests that the motivation for physical activity is regulated by food supply and body weight. In the present experiment, food allocation was varied within subjects by prefeeding food-deprived rats 0, 5, 10 and 15 g of food before sessions of lever pressing for wheel-running reinforcement. The experiment assessed the effects of prefeeding on rates of wheel running, lever pressing, and postreinforcement pausing. Results showed that prefeeding animals 5 g of food had no effect. Prefeeding 10 g of food reduced lever pressing for wheel running and rates of wheel running without a significant change in body weight; the effect was, however, transitory. Prefeeding 15 g of food increased the animals' body weights, resulting in a sustained decrease of wheel running and lever pressing, and an increase in postreinforcement pausing. Overall the results indicate that the motivation for physical activity is regulated by changes in local food supply, but is sustained only when there is a concomitant change in body weight.  相似文献   

6.
Six adult monkeys (Macaca fascicularis) were trained to switch on a lamp by pressing the lever, to hold the lever for not less than 1 s (the lamp being switched on), and get a portion of food. After reaching a learning criterion, the delay between the lever pressing and food reinforcement was increased to 2.5 s. The experimental procedure was repeated in three experimental sessions with 2-month between-session intervals. It was shown that the retraining process after the uneven change in the delay duration developed in three stages: (1) stage of emotional hyperreactivity that reflected a mismatch between the cation and absence of the expected result; (2) stage of intermediate stabilization, when the percent of efficient attempts was the same as under conditions of 1-s delay; (3) stage of purposive instrumental lever holding till the moment of reinforcement presentation.  相似文献   

7.
Drug-discrimination (DD) techniques can be used to study abuse-related effects by establishing the interoceptive effects of a training drug (e.g., cocaine) as a cue for performing a specific operant response (e.g., lever pressing reinforced by food). During training with this protocol, pressing one lever is reinforced when the training drug is injected before the start of the session, and responding on a second lever is reinforced when vehicle is injected before the session. Lever choice during test sessions can then be used as an indication of whether a novel drug has effects similar to the training drug, or whether a potential therapeutic alters the effects of the training drug. Although training can be lengthy (up to several months), the pharmacological specificity of DD procedures make them a perfect complement to other techniques used to study drug-abuse phenomena, such as intravenous self-administration and conditioned place-preference procedures.  相似文献   

8.

Background

Two parallel and interacting processes are said to underlie animal behavior, whereby learning and performance of a behavior is at first via conscious and deliberate (goal-directed) processes, but after initial acquisition, the behavior can become automatic and stimulus-elicited (habitual). With respect to instrumental behaviors, animal learning studies suggest that the duration of training and the action-outcome contingency are two factors involved in the emergence of habitual seeking of “natural” reinforcers (e.g., sweet solutions, food or sucrose pellets). To rigorously test whether behaviors reinforced by abused substances such as ethanol, in particular, similarly become habitual was the primary aim of this study.

Methodology/Principal Findings

Male Long Evans rats underwent extended or limited operant lever press training with 10% sucrose/10% ethanol (10S10E) reinforcement (variable interval (VI) or (VR) ratio schedule of reinforcement), or with 10% sucrose (10S) reinforcement (VI schedule only). Once training and pretesting were complete, the impact of outcome devaluation on operant behavior was evaluated after lithium chloride injections were paired with the reinforcer, or unpaired 24 hours later. After limited, but not extended instrumental training, lever pressing by groups trained under VR with 10S10E and under VI with 10S was sensitive to outcome devaluation. In contrast, responding by both the extended and limited training 10S10E VI groups was not sensitive to ethanol devaluation during the test for habitual behavior.

Conclusions/Significance

Operant behavior by rats trained to self-administer an ethanol-sucrose solution showed variable sensitivity to a change in the value of ethanol, with relative insensitivity developing sooner in animals that received time-variable ethanol reinforcement during training sessions. One important implication, with respect to substance abuse in humans, is that initial learning about the relationship between instrumental actions and the opportunity to consume ethanol-containing drinks can influence the time course for the development or expression of habitual ethanol seeking behavior.  相似文献   

9.
The ability of amylin to reduce acute food intake in rodents is well established. Longer-term administration in rats (up to 24 days) shows a concomitant reduction in body weight, suggesting energy intake plays a significant role in mediating amylin-induced weight loss. The current set of experiments further explores the long-term effects of amylin (4-11 wk) on food preference, energy expenditure, and body weight and composition. Furthermore, we describe the acute effect of amylin on locomotor activity and kaolin consumption to test for possible nonhomeostatic mechanisms that could affect food intake. Four-week subcutaneous amylin infusion of high-fat fed rats (3-300 microg.kg(-1).day(-1)) dose dependently reduced food intake and body weight gain (ED(50) for body weight gain = 16.5 microg.kg(-1).day(-1)). The effect of amylin on body weight gain was durable for up to 11 wks and was associated with a specific loss of fat mass and increased metabolic rate. The body weight of rats withdrawn from amylin (100 microg.kg(-1).day(-1)) after 4 wks of infusion returned to control levels 2 wks after treatment cessation, but did not rebound above control levels. When self-selecting calories from a low- or high-fat diet during 11 wks of infusion, amylin-treated rats (300 microg.kg(-1).day(-1)) consistently chose a larger percentage of calories from the low-fat diet vs. controls. Amylin acutely had no effect on locomotor activity or kaolin consumption at doses that decreased food intake. These results demonstrate pharmacological actions of amylin in long-term body weight regulation in part through appetitive-related mechanisms and possibly via changes in food preference and energy expenditure.  相似文献   

10.
The master circadian pacemaker emits signals that trigger organ-specific oscillators and, therefore, constitutes a basic biological process that enables organisms to anticipate daily environmental changes by adjusting behavior, physiology, and gene regulation. Although circadian rhythms are well characterized on a physiological level, little is known about circadian modulations of higher cognitive functions. Thus, we investigated circadian repercussions on language performance at the level of minimal syntactic processing by means of German noun phrases in ten young healthy men under the unmasking conditions of a 40 h constant-routine protocol. Language performance for both congruent and incongruent noun phrases displayed a clear diurnal rhythm with a peak performance decrement during the biological night. The nadirs, however, differed such that worst syntactic processing of incongruent noun phrases occurred 3 h earlier (07:00 h) than that of congruent noun phrases (10:00 h). Our results indicate that language performance displays an internally generated circadian rhythmicity with optimal time for parsing language between 3 to 6 h after the habitual wake time, which usually corresponds to 10:00–13:00 h. These results may have important ramifications for establishing optimal times for shiftwork changes or testing linguistically impaired people.  相似文献   

11.
A common feature of reinforcer devaluation studies is that new learning induces the devaluation. The present study used extinction to induce new learning about the conditioned reinforcer in a heterogeneous chain schedule. Rats pressed a lever in a heterogeneous chain schedule to produce a conditioned reinforcer (light) associated with the opportunity to obtain an unconditioned reinforcer (food) by pulling a chain. The density of food reinforcement correlated with the conditioned reinforcer was varied in a comparison of continuous and variable-ratio reinforcement schedules of chain pulling; this had no noticeable effect on conditioned reinforcer devaluation produced by extinction of chain pulling. In contrast, how rats were deprived appeared to matter very much. Restricting meal duration to 1h daily produced more lever pressing during baseline training and a greater reductive effect of devaluation on lever pressing than restricting body weight to 80% of a control rat's weight, which eliminated the devaluation effect. Further analysis suggested that meal-duration restriction may have produced devaluation effects because it was more effective than weight restriction in reducing rats' body weights. Our results exposed an important limitation on the devaluation of conditioned reinforcers: slight differences in food restriction, using two commonly employed food-restriction procedures, can produce completely different interpretations of reinforcer devaluation while leaving reinforcer-based learning intact.  相似文献   

12.
Responses in 160 neurons of the cat parietal cortex were investigated during the performance of instrumental food reflex (lever pressing) during experiments involving presentation of a conditioned acoustic stimulus. Discharge rate changed in 49% of neurons during the period preceding the conditioned reflex movement. Three basic types of cell with an excitatory response pattern were discovered apart from a small group showing suppression of activity, each differently involved in the process of conditioned reflex movement performance. Excitation arose in neurons of the first type 200±52.9 msec (average) before the onset of the conditioned reflex movement, reaching its peak discharge rate as the animal placed its paw on the lever. The former parameter was 605±54.2 msec for the second type of neuron, with firing rate peaking between the start of electromyographic response and the completion of lever pressing. The same parameter measured 1,000–2,000 msec in the third type and activation took the form of a diffuse increase in discharge rate without a clear-cut peak occurring during performance of the instrumental reflex. Findings would suggest the involvement of the parietal cortex neuronal system in the triggering as well as the follow-through of conditioned reflex motion.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 223–231, March–April, 1987.  相似文献   

13.
Recently, we developed a novel method for estimating human circadian phase with noninvasive ambulatory measurements combined with subject-independent multiple regression models and a curve-fitting approach. With this, we were able to estimate circadian phase under real-life conditions with low subject burden, i.e., without need of constant routine (CR) laboratory conditions, and without measuring standard circadian markers, such as core body temperature (CBT) or pineal hormone melatonin rhythms. The precision of ambulatory-derived estimated circadian phase was within an error of 12?±?41?min (mean?±?SD) in comparison to melatonin phase during a CR protocol. The physiological measures could be reduced to a triple combination: skin temperatures, irradiance in the blue spectral band of ambient light, and motion acceleration. Here, we present a nonlinear regression model approach based on artificial neural networks for a larger data set (25 healthy young males), including both the original data and additional data collected in the same protocol and using the same equipment. Throughout our validation study, subjects wore multichannel ambulatory monitoring devices and went about their daily routine for 1 wk. The devices collected a large number of physiological, behavioral, and environmental variables, including CBT, skin temperatures, cardiovascular and respiratory functions, movement/posture, ambient temperature, spectral composition and intensity of light perceived at eye level, and sleep logs. After the ambulatory phase, study volunteers underwent a 32-h CR protocol in the laboratory for measuring unmasked circadian phase (i.e., "midpoint" of the nighttime melatonin rhythm). To overcome the complex masking effects of many different confounding variables during ambulatory measurements, neural network-based nonlinear regression techniques were applied in combination with the cross-validation approach to subject-independent prediction of circadian phase. The most accurate estimate of circadian phase with a prediction error of -3?±?23?min (mean?±?SD) was achieved using only two types of the measured variables: skin temperatures and irradiance for ambient light in the blue spectral band. Compared to our previous linear multiple regression modeling approach, motion acceleration data can be excluded and prediction accuracy, nevertheless, improved. Neural network regression showed statistically significant improvement of variance of prediction error over traditional approaches in determining circadian phase based on single predictors (CBT, motion acceleration, or sleep logs), even though none of these variables was included as predictor. We, therefore, have identified two sets of noninvasive measures that, combined with the prediction model, can provide researchers and clinicians with a precise measure of internal time, in spite of the masking effects of daily behavior. This method, here validated in healthy young men, requires testing in a clinical or shiftwork population suffering from circadian sleep-wake disorders. (Author correspondence: vitaliy.kolodyazhniy@sbg.ac.at ).  相似文献   

14.
The effect of extensive training on the contribution of response--outcome learning to instrumental performance in rats was re-examined in two experiments using a transfer test. In each experiment, two discriminative stimuli were established as signals for different response--outcome combinations (e.g. light: nose poke-pellets and noise: handle pull-sucrose). Then, two different responses (lever press and chain pull) were concurrently trained with those outcomes. In Experiment 1, these responses underwent extensive training, each with a different outcome (e.g. lever press-pellets and chain pull-sucrose). In Experiment 2, these responses were trained moderately with one outcome (e.g. lever press-pellets and chain pull-sucrose) and extensively with a different outcome (e.g. lever press-sucrose and chain pull-pellets). Finally, transfer tests were conducted in which the discriminative stimuli, noise and light, were tested periodically with the lever and chain. In Experiment 1, the stimuli consistently and preferentially elevated performance of the response trained with the same outcome relative to that trained with a different outcome. In Experiment 2, the stimuli elevated both responses nondifferentially. However, a drive manipulation (thirst) designed to increase the value of sucrose relative to pellets revealed a significant preference for the response that had been extensively trained with sucrose. Overall, the results of these experiments confirm previous findings that instrumental behaviors do not become increasingly independent of their consequent outcomes with extended training. However, the transfer results of Experiment 2 highlight a potential limitation of the transfer test for assessing variations in the strength of R--O associations.  相似文献   

15.
ALTHOUGH subtotal neocortical lesions seem not to impair an animal's ability to acquire a new habit in classical (Pav-lovian) conditioning procedures1,2, instrumental learning is retarded by this surgical, procedure in proportion to the mass of tissue removed3–6. Little is known, however, about an animal's ability to benefit from formal training procedures if the entire neocortex is removed. Earlier experiments have shown that a decorticate can acquire simple salivary7,8, leg-flexion9, or diffuse10,11 Pavlovian conditional responses and Bromiley12 has reported a restrained, decorticate dog which produced leg flexions to avoid shock, although only in favourable conditions. A more recent study13, involving rats with 90% ablations of neocortex, showed that Pavlovian autonomic conditioning was little affected by cortical lesions which abolished instrumental learning of the same responses. I have investigated the possibility of establishing the instrumental response of lever pressing for food in freely moving, totally neodecorticated rabbits in conditions of prolonged training.  相似文献   

16.
Shift workers encounter an increased risk of cardiovascular disease compared to their day working counterparts. To explore this phenomenon, the effects of one week of simulated night shift on cardiac sympathetic (SNS) and parasympathetic (PNS) activity were assessed. Ten (5m; 5f) healthy subjects aged 18-29 years attended an adaptation and baseline night before commencing one week of night shift (2300-0700 h). Sleep was recorded using a standard polysomnogram and circadian phase was tracked using salivary melatonin data. During sleep, heart rate (HR), cardiac PNS activity (RMSSD) and cardiac SNS activity (pre-ejection period) were recorded. Night shift did not influence seep quality, but reduced sleep duration by a mean of 52 +/- 29 min. One week of night shift evoked a small chronic sleep debt of 5 h 14 +/- 56 min and a cumulative circadian phase delay of 5 h +/- 14 min. Night shift had no significant effect on mean HR, but mean cardiac SNS activity during sleep was consistently higher and mean cardiac PNS activity during sleep declined gradually across the week. These results suggest that shiftwork has direct and unfavourable effects on cardiac autonomic activity and that this might be one mechanism via which shiftwork increases the risk of cardiovascular disease. It is postulated that sleep loss could be one mediator of the association between shiftwork and cardiovascular health.  相似文献   

17.
Although low doses of systemic ethanol stimulate locomotion in mice, in rats the typical response to peripheral ethanol administration is a dose-dependent suppression of motor activity. In the present study, male rats received acute doses of ethanol IP (0.0, 0.25, 0.5, 1.0 or 2.0 g/kg) and were tested on several behavioral tasks related to the motor suppressive or sedative effects of the drug. This research design allowed for comparisons between the effects of ethanol on different behavioral tasks in order to determine which tasks were most sensitive to the drug (i.e., which tasks would yield deficits that appear at lower doses). In the first two experiments, rats were evaluated on a sedation rating scale, and ataxia/motor incoordination was assessed using the rotarod apparatus. Administration of 2.0 g/kg ethanol produced sedation as measured by the sedation scale, and also impaired performance on the rotarod. In a third experiment, ethanol reduced locomotion in the stabilimeter at several doses and times after IP injection, with 0.25 g/kg being the lowest dose that produced a significant decrease in locomotion. Finally, experiment four studied the effects of ethanol on operant lever pressing reinforced on a fixed ratio 5 (FR5) schedule for food reinforcement. Data showed suppressive effects on lever pressing at doses of 1.0, and 2.0 g/kg ethanol. Analysis of the interresponse time distribution showed that ethanol produced a modest slowing of operant responding, as well as fragmentation of the temporal pattern of responding and increases in pausing. Taken together, these results indicate that rats can demonstrate reduced locomotion and slowing of operant responding at doses lower than those that result in sedation or ataxia as measured by the rotarod. The detection of subtle changes in different motor test across a broad range of ethanol doses is important for understanding ethanol effects in other cognitive, motivational or sensory processes.  相似文献   

18.
Severe sepsis, a syndrome that complicates infection and injury, affects 750,000 annually in the United States. The acute mortality rate is approximately 30%, but, strikingly, sepsis survivors have a significant disability burden: up to 25% of survivors are cognitively and physically impaired. To investigate the mechanisms underlying persistent cognitive impairment in sepsis survivors, here we developed a murine model of severe sepsis survivors following cecal ligation and puncture (CLP) to study cognitive impairments. We observed that serum levels of high mobility group box 1 (HMGB1), a critical mediator of acute sepsis pathophysiology, are increased in sepsis survivors. Significantly, these levels remain elevated for at least 4 wks after CLP. Sepsis survivors develop significant, persistent impairments in learning and memory, and anatomic changes in the hippocampus associated with a loss of synaptic plasticity. Administration of neutralizing anti-HMGB1 antibody to survivors, beginning 1 wk after onset of peritonitis, significantly improved memory impairments and brain pathology. Administration of recombinant HMGB1 to naïve mice recapitulated the memory impairments. Together, these findings indicate that elevated HMGB1 levels mediate cognitive decline in sepsis survivors, and suggest that it may be possible to prevent or reverse cognitive impairments in sepsis survivors by administration of anti-HMGB1 antibodies.  相似文献   

19.
Severe sepsis, a syndrome that complicates infection and injury, affects 750,000 annually in the United States. The acute mortality rate is approximately 30%, but, strikingly, sepsis survivors have a significant disability burden: up to 25% of survivors are cognitively and physically impaired. To investigate the mechanisms underlying persistent cognitive impairment in sepsis survivors, here we developed a murine model of severe sepsis survivors following cecal ligation and puncture (CLP) to study cognitive impairments. We observed that serum levels of high mobility group box 1 (HMGB1), a critical mediator of acute sepsis pathophysiology, are increased in sepsis survivors. Significantly, these levels remain elevated for at least 4 wks after CLP. Sepsis survivors develop significant, persistent impairments in learning and memory, and anatomic changes in the hippocampus associated with a loss of synaptic plasticity. Administration of neutralizing anti-HMGB1 antibody to survivors, beginning 1 wk after onset of peritonitis, significantly improved memory impairments and brain pathology. Administration of recombinant HMGB1 to na?ve mice recapitulated the memory impairments. Together, these findings indicate that elevated HMGB1 levels mediate cognitive decline in sepsis survivors, and suggest that it may be possible to prevent or reverse cognitive impairments in sepsis survivors by administration of anti-HMGB1 antibodies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号