首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
The structure and surface activity of the extracellular fraction of pulmonary surfactant known as tubular myelin are Ca2+ dependent. Previous studies have demonstrated surfactant-specific proteins with monomeric molecular weights of 28,000-36,000 (SP28-36) are associated with this fraction. In reassembled lipoprotein mixtures, SP28-36 promotes the Ca2+-induced aggregation and surface activity of surfactant lipids, but the detailed interactions between Ca2+, SP28-36, and surfactant lipids have not been established. In this study, we investigated the effect of various cations on the aggregation of surfactant lipid liposomes in the presence of SP28-36. SP28-36 reduced the threshold ion concentration for liposome aggregation from greater than 10 to 0.5 mM for Ca2+, Ba2+, and Sr2+ but not Mg2+ or Mn2+. The liposome aggregation was reversed by ethylenediaminetetraacetic acid and not associated with leakage of carboxyfluorescein. SP28-36 promoted similar liposome aggregation at pH less than 5 in the absence of divalent cations. Surfactant lipids adsorbed slowly to an air-fluid interface in all ionic conditions unless SP28-36 was present. Both Ca2+ and H+ induced rapid lipid adsorption in the presence of SP28-36. The surface activity of native surfactant had a similar ion dependence. Electron micrographs of native surfactant showed typical tubular myelin structures at pH 7.4 only in the presence of Ca2+. At pH 4.4 in the absence of Ca2+, similar but not identical structures were seen. In the reconstituted system, SP28-36 in the presence of Ca2+ induced the formation of larger multilayered structures including parallel bilayers and small areas of squares and triangles with dimensions similar to structures found in the native material.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
Kinetics of superoxide anion generation by the isolated plasma membrane was determined by the rate of formazan formation from XTT in the presence of NADPH or NADH. The plasma membrane was prepared from (control) etiolated maize seedlings grown at 25°C and from (cooled) seedlings incubated at 6°C for the last day. Membrane vesicles from the control plants possessed superoxide-producing activity, and the rate of NADH oxidation was markedly higher than that of NADPH. The low-temperature incubation of the seedlings suppressed the NADPH-dependent activity, whereas the NADH-dependent one slightly increased. The solubilized by dodecyl maltoside (DDM) plasma membranes were separated into multiprotein complexes by high-resolution clear native electrophoresis (hrCN-PAGE). The aim was to find complexes exhibiting the superoxide-producing activity sensitive to inhibition by diphenylene iodonium. Several protein complexes from the plasma membrane capable of superoxide producion in the presence of NADPH or NADH were found. The maximum diphenylene iodonium-sensitive activity was found in the high-molecular weight complex, in which proteins reacting with antibodies against C-terminal peptide of phagocytic oxidase (gp91phox) were detectable. The activity of this complex was lower in the cooled than in the control seedlings and displayed higher affinity to NADPH than to NADH. To search for the cooling-induced changes in the polypeptide content of protein complexes, the two-dimensional difference gel electrophoresis (hrCN/SDS-PAGE) was used. Control and cooled samples, whose lysine had been labeled with fluorescent dyes Cy2 and Cy3, respectively, were separated by this method in one gel. Decrease in a temperature of plant growing affected the protein content of the complex so that some new proteins appeared and several polypeptides disappeared as compared with the control. There were no significant differences between the cooled and control counterparts in the content of proteins detectable with gp91phox antibodies. Therefore, the high-molecular complex containing NADPH oxidase looses proteins under low temperature that may decrease its superoxide-producing activity.  相似文献   

4.
Mammalian cell metabolism is responding to changes in temperature. Body temperature is regulated around 37 degrees C, but temperatures of exposed skin areas may vary between 20 degrees C and 40 degrees C for extended periods of time without apparent disturbance of adequate cellular functions. Cellular membrane functions are depending from temperatures but also from their lipid environment, which is a major component of membrane fluidity. Temperature-induced changes of membrane fluidity may be counterbalanced by adaptive modification of membrane lipids. Temperature-dependent changes of whole cell- and of purified membrane lipids and possible homeoviscous adaptation of membrane fluidity have been studied in human skin fibroblasts cultured at 30 degrees C, 37 degrees C, and 40 degrees C for ten days. Membrane anisotropy was measured by polarized fluorescence spectroscopy using TMA-DPH for superficial and DPH for deeper membrane layers. Human fibroblasts were able to adapt themselves to hypothermic temperatures (30 degrees C) by modifying the fluidity of the deeper apolar regions of the plasma membranes as reported by changes of fluorescence anisotropy due to appropriate changes of their plasma membrane lipid composition. This could not be shown for the whole cells. At 40 degrees C growth temperature, adaptive changes of the membrane lipid composition, except for some changes in fatty acid compositions, were not seen. Independent from the changes of the membrane lipid composition, the fluorescence anisotropy of the more superficial membrane layers (TMA-DPH) increased in cells growing at 30 degrees C and decreased in cells growing at 40 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号