首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glycosphingolipids were isolated from a canine kidney cell line (MDCK) and its ouabain-resistant mutant (MDCK-OR) by solvent extraction, mild alkaline methanolysis, a DEAE-Sephadex column, and preparative TLC. The glycolipids were characterized by their mobilities on TLC, an analysis of carbohydrates as trimethylsilyl methyl glycosides and acetates of partially methylated alditols, as well as by treatment with specific glycosidases. In the neutral glycolipid fraction of both cell lines, galactosylceramide (GalCer), glucosylceramide (GlcCer), lactosylceramide (LacCer), digalactosylceramide (Ga2Cer), globotriaosylceramide (Gb3Cer), globoside (Gb4Cer), and the Forssman antigen (IV3GalNAc alpha-Gb4Cer) were identified. The contents of Ga2Cer (4.4 nmol/mg protein), Gb3Cer (0.6), Gb4Cer (2.9), and IV3GalNac alpha-Gb4Cer (19.5) in MDCK-OR were 1.4- to 2.1-fold higher than those in MDCK, while the concentrations of GlcCer (5.3) and LacCer (1.4) in MDCK-OR were about half of those in MDCK. Among acidic glycolipids of MDCK-OR, galactosyl sulfatide (GalCer-I3-sulfate) and lactosyl sulfatide (LacCer-II3-sulfate) were increased to 1.9 (2.7-fold) and 0.2 nmol/mg protein (2.0-fold), respectively, as compared to MDCK. However, N-acetylneuraminosyllactosylceramide (GM3), the predominant ganglioside in both cell lines, was decreased to about one third of the level (1.5 nmol/mg protein) in the parent MDCK (4.7 nmol/mg protein). The fatty acid of the glycolipids in both cell lines consisted mainly of saturated acids of 16, 18, 22, and 24 carbons.  相似文献   

2.
Retinal ganglion cells (RGCs) are the sole projecting neurons of the retina and their axons form the optic nerve. Here, we show that embryogenesis‐associated mouse RGC differentiation depends on mitophagy, the programmed autophagic clearance of mitochondria. The elimination of mitochondria during RGC differentiation was coupled to a metabolic shift with increased lactate production and elevated expression of glycolytic enzymes at the mRNA level. Pharmacological and genetic inhibition of either mitophagy or glycolysis consistently inhibited RGC differentiation. Local hypoxia triggered expression of the mitophagy regulator BCL2/adenovirus E1B 19‐kDa‐interacting protein 3‐like (BNIP3L, best known as NIX) at peak RGC differentiation. Retinas from NIX‐deficient mice displayed increased mitochondrial mass, reduced expression of glycolytic enzymes and decreased neuronal differentiation. Similarly, we provide evidence that NIX‐dependent mitophagy contributes to mitochondrial elimination during macrophage polarization towards the proinflammatory and more glycolytic M1 phenotype, but not to M2 macrophage differentiation, which primarily relies on oxidative phosphorylation. In summary, developmentally controlled mitophagy promotes a metabolic switch towards glycolysis, which in turn contributes to cellular differentiation in several distinct developmental contexts.  相似文献   

3.
4.
The vertebrate lens provides an excellent model to study the mechanisms that regulate terminal differentiation. Although fibroblast growth factors (FGFs) are thought to be important for lens cell differentiation, it is unclear which FGF receptors mediate these processes during different stages of lens development. Deletion of three FGF receptors (Fgfr1-3) early in lens development demonstrated that expression of only a single allele of Fgfr2 or Fgfr3 was sufficient for grossly normal lens development, while mice possessing only a single Fgfr1 allele developed cataracts and microphthalmia. Profound defects were observed in lenses lacking all three Fgfrs. These included lack of fiber cell elongation, abnormal proliferation in prospective lens fiber cells, reduced expression of the cell cycle inhibitors p27kip1 and p57kip2, increased apoptosis and aberrant or reduced expression of Prox1, Pax6, c-Maf, E-cadherin and α-, β- and γ-crystallins. Therefore, while signaling by FGF receptors is essential for lens fiber differentiation, different FGF receptors function redundantly.  相似文献   

5.
Wdr5 is developmentally expressed in osteoblasts and accelerates osteoblast differentiation in vitro and in vivo. To address whether Wdr5 is essential for osteoblast differentiation, plasmid-based small interfering RNAs were used to stably suppress endogenous Wdr5 protein levels in MC3T3-E1 cells. Reduction of endogenous Wdr5 levels markedly inhibited osteoblast differentiation, evidenced by a significant decrease in alkaline phosphatase activity, Runx-2 and osteocalcin mRNAs, and absence of mineralized matrix formation. Wdr5 suppression also resulted in a reduction of histone H3 lysine 4 trimethylation, confirming its critical role in this modification. Because Wdr5 overexpression enhances canonical Wnt signaling in osteoblasts in vivo, the effects of Wdr5 silencing on this pathway were examined. The expression of the canonical Wnt target gene, c-myc, was decreased, whereas that of sfrp2, which is repressed by Wnt signaling, was increased with Wdr5 knockdown. Although only a minimal increase in apoptosis was observed, the antiapoptotic effect of Wnt signaling was also impaired with Wdr5 silencing. The expression of canonical Wnts was significantly decreased with Wdr5 knockdown, resulting in a decrease in nuclear beta-catenin protein levels. Activation of the canonical Wnt signaling pathway did not overcome the effects of Wdr5 knockdown on the expression of Wnt target genes. Chromatin immunoprecipitation demonstrated that Wdr5 is present on the Wnt1 promoter and on canonical Wnt response elements of the c-myc and Runx-2 promoters. These studies demonstrate that Wdr5 suppression interferes with the canonical Wnt signaling pathway at multiple stages and that optimal Wdr5 levels are required for induction of the osteoblast phenotype.  相似文献   

6.
7.
Wang Y  Werz C  Xu D  Chen Z  Li Y  Hafen E  Bergmann A 《PloS one》2008,3(1):e1447

Background

Activation of cell surface receptors transduces extracellular signals into cellular responses such as proliferation, differentiation and survival. However, as important as the activation of these receptors is their appropriate spatial and temporal down-regulation for normal development and tissue homeostasis. The Cbl family of E3-ubiquitin ligases plays a major role for the ligand-dependent inactivation of receptor tyrosine kinases (RTKs), most notably the Epidermal Growth Factor Receptor (EGFR) through ubiquitin-mediated endocytosis and lysosomal degradation.

Methodology/Principal Findings

Here, we report the mutant phenotypes of Drosophila cbl (D-cbl) during eye development. D-cbl mutants display overgrowth, inhibition of apoptosis, differentiation defects and increased ommatidial spacing. Using genetic interaction and molecular markers, we show that most of these phenotypes are caused by increased activity of the Drosophila EGFR. Our genetic data also indicate a critical role of ubiquitination for D-cbl function, consistent with biochemical models.

Conclusions/Significance

These data may provide a mechanistic model for the understanding of the oncogenic activity of mammalian cbl genes.  相似文献   

8.
DNA topoisomerase I (Topo1) contributes to vital biological functions, but its regulation is not clearly understood. The BTBD1 protein was recently cloned on the basis of its interaction with the core domain of Topo1 and is expressed particularly in skeletal muscle. To determine BTBD1 functions in this tissue, the in vitro model used was the C2C12 mouse muscle cell line, which expresses BTBD1 mainly after myotube differentiation. We studied the effects of a stably overexpressed BTBD1 protein truncated of the 108 N-terminal amino-acid residues and harbouring a C-terminal FLAG tag (Delta-BTBD1). The proliferation speed of Delta-BTBD1 C2C12 cells was significantly decreased and no myogenic differentiation was observed, although these cells maintained their capacity to enter adipocyte differentiation. These alterations could be related to Topo1 deregulation. This hypothesis is further supported by the decrease in nuclear Topo1 content in Delta-BTBTD1 proliferative C2C12 cells and the switch from the main peripheral nuclear localization of Topo1 to a mainly nuclear diffuse localization in Delta-BTBTD1 C2C12 cells. Finally, this study demonstrated that BTBD1 is essential for myogenic differentiation.  相似文献   

9.
FGF8, a member of the fibroblast growth factor (FGF) family, has been shown to play important roles in different developing systems. Mouse embryonic carcinoma P19 cells could be induced by retinoic acid (RA) to differentiate into neuroectodermal cell lineages, and this process is cell aggregation dependent. In this report, we show that FGF8 expression is transiently up-regulated upon P19 cell aggregation, and the aggregation-dependent FGF8 elevation is pluripotent stem cell related. Overexpressing FGF8 promotes RA-induced monolayer P19 cell neural differentiation. Inhibition of FGF8 expression by RNA interference or blocking FGF signaling by the FGF receptor inhibitor, SU5402, attenuates neural differentiation of the P19 cell. Blocking the bone morphogenetic protein (BMP) pathway by overexpressing Smad6 in P19 cells, we also show that FGF signaling plays a BMP inhibition-independent role in P19 cell neural differentiation.  相似文献   

10.
Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural development with a switch from globo‐ to ganglio‐series glycosphingolipid production. Failure to execute this glycosphingolipid switch leads to neurodevelopmental disorders in humans, indicating that glycosphingolipids are key players in this process. Nevertheless, both the molecular mechanisms that control the glycosphingolipid switch and its function in neurodevelopment are poorly understood. Here, we describe a self‐contained circuit that controls glycosphingolipid reprogramming and neural differentiation. We find that globo‐series glycosphingolipids repress the epigenetic regulator of neuronal gene expression AUTS2. AUTS2 in turn binds and activates the promoter of the first and rate‐limiting ganglioside‐producing enzyme GM3 synthase, thus fostering the synthesis of gangliosides. By this mechanism, the globo–AUTS2 axis controls glycosphingolipid reprogramming and neural gene expression during neural differentiation, which involves this circuit in neurodevelopment and its defects in neuropathology.  相似文献   

11.
The biosynthesis of phosphatidylethanolamine was examined during differentiation of P19 teratocarcinoma cells into cardiac myocytes. P19 cells were induced to undergo differentiation into cardiac myocytes by the addition of dimethyl sulfoxide to the medium. Immunofluorescence labeling confirmed the expression of striated myosin 10 days postinduction of differentiation. The content of phosphatidylethanolamine increased significantly within the first 2 days of differentiation. [1,3-(3)H]Glycerol incorporation into phosphatidylethanolamine was increased 7.2-fold during differentiation, indicating an elevation in de novo synthesis from 1, 2-diacyl-sn-glycerol. The mechanism for the increase in phosphatidylethanolamine levels during cardiac cell differentiation was a 2.8-fold increase in the activity of ethanolaminephosphotransferase, the 1,2-diacyl-sn-glycerol utilizing reaction of the cytidine 5'-diphosphate-ethanolamine pathway of phosphatidylethanolamine biosynthesis. Incubation of P19 cells with the phosphatidylethanolamine biosynthesis inhibitor 8-(4-chlorophenylthio)-cAMP inhibited the differentiation-induced elevation in phosphatidylethanolamine levels but did not affect the expression of striated myosin. The results suggest that elevation in phosphatidylethanolamine is an early event of P19 cell differentiation into cardiac myocytes, but is not essential for differentiation to proceed.  相似文献   

12.
Specific germline mutations of the receptor tyrosine kinase, Ret, predispose to multiple endocrine neoplasia types 2A and 2B and familial medullary thyroid carcinoma. The mechanisms by which different Ret isoforms (Ret-2A and Ret-2B) cause distinct neoplastic diseases remain largely unknown. On the other hand, forced expression of these mutated versions of Ret induces the rat pheochromocytoma cell line, PC12, to differentiate. Here we used an inducible vector encoding a dominant-negative Ras (Ras p21(N17)) to investigate the contributions of the Ras pathway to the phenotype induced in PC12 cells by the expression of either Ret-2A or Ret-2B mutants. We show that the Ret-induced molecular and morphological changes are both mediated by Ras-dependent pathways. However, even though inhibition of Ras activity was sufficient to revert Ret-induced differentiation, the kinetics of morphological reversion of the Ret-2B- was more rapid than the Ret-2A-transfected cells. Further, we show that in Ret-transfected cells the suc1-associated neurotrophic factor-induced tyrosine phosphorylation target, SNT, is chronically phosphorylated in tyrosine residues, and associates with the Sos substrate. These results indicate the activation of the Ras cascade as an essential pathway triggered by the chronic active Ret mutants in PC12 cells. Moreover, our data indicate SNT as a substrate for both Ret mutants, which might mediate the activation of this cascade.  相似文献   

13.
14.
The aggregation of chondroprogenitor mesenchymal cells into precartilage condensation represents one of the earliest events in chondrogenesis. N-cadherin is a key cell adhesion molecule implicated in chondrogenic differentiation. Recently, ADAM10-mediated cleavage of N-cadherin has been reported to play an important role in cell adhesion, migration, development and signaling. However, the significance of N-cadherin cleavage in chondrocyte differentiation has not been determined. In the present study, we found that the protein turnover of N-cadherin is accelerated during the early phase of chondrogenic differentiation in ATDC5 cells. Therefore, we generated the subclones of ATDC5 cells overexpressing wild-type N-cadherin, and two types of subclones overexpressing a cleavage-defective N-cadherin mutant, and examined the response of these cells to insulin stimulation. The ATDC5 cells overexpressing cleavage-defective mutants severely prevented the formation of cartilage aggregates, proteoglycan production and the induction of chondrocyte marker gene expression, such as type II collagen, aggrecan and type X collagen. These results suggested that the cleavage of N-cadherin is essential for chondrocyte differentiation.  相似文献   

15.
In filamentous fungi, a cell death reaction occurs when cells of unlike genotype fuse. This cell death reaction, known as incompatibility reaction, is genetically controlled by a set of loci termed het loci (for heterokaryon incompatibility loci). In Podospora anserina, genes induced during this cell death reaction (idi genes) have been identified. The idi-6/pspA gene encodes a serine protease that is the orthologue of the vacuolar protease B of Saccharomyces cerevisiae involved in autophagy. We report here that the PSPA protease participates in the degradative autophagic pathway in Podospora. We have identified the Podospora orthologue of the AUT7 gene of S. cerevisiae involved in the early steps of autophagy in yeast. This gene is induced during the development of the incompatibility reaction and was designated idi-7. We have used a GFP-IDI7 fusion protein as a cytological marker of the induction of autophagy. Relocalization of this fusion protein and detection of autophagic bodies inside the vacuoles during the development of the incompatibility reaction provide cytological evidence of induction of autophagy during this cell death reaction. Therefore, cell death by incompatibility in fungi appears to be related to type II programmed cell death in metazoans. In addition, we found that pspA and idi-7 null mutations confer differentiation defects such as the absence of female reproductive structures, indicating that autophagy is required for differentiation in Podospora.  相似文献   

16.
17.
18.
Using as the host cell, a proline-requiring mutant of Chinese hamster ovary cell (CHO-K1), it was possible to arrest the differentiation of amastigote forms of Trypanosoma cruzi at the intermediate intracellular epimastigote-like stage. Complete differentiation to the trypomastigote stage was obtained by addition of L-proline to the medium. This effect was more pronounced using the T. cruzi CL-14 clone that differentiates fully at 33 degrees C (permissive temperature) and poorly at 37 degrees C (restrictive temperature). A synchronous differentiation of T. cruzi inside the host-cell is then possible by temperature switching in the presence of proline. It was found that differentiation of intracellular epimastigotes and trypomastigote bursting were proline concentration dependent. The intracellular concentration of proline was measured as well as the transport capacity of proline by each stage of the parasite. Amastigotes have the highest concentration of free proline (8.09 +/- 1.46 mM) when compared to trypomastigotes (3.81 +/- 1.55) or intracellular epimastigote-like forms (0.45 +/- 0.06 mM). In spite of having the lowest content of intracellular free proline, intracellular epimastigotes maintained the highest levels of L-proline transport compared to trypomastigotes and intracellular amastigotes, providing evidence for a high turnover for the L-proline pool in that parasite stage. This is the first report to establish a relationship between proline concentration and intracellular differentiation of Trypanosoma cruzi in the mammalian host.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号