首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Circadian oscillators play an indispensable role in the coordination of physiological processes with the cyclic changes in the physical environment. A significant number of recent clinical and molecular studies suggest that circadian biology may play an important role in the regulation of adipose and other metabolic tissue functions. In this discussion, we present the hypothesis that circadian dysfunction may be involved in the pathogenesis of obesity, type 2 diabetes, and the metabolic syndrome.  相似文献   

3.
The circadian clock of Neurospora broadly regulates gene expression and is synchronized with the environment through molecular responses to changes in ambient light and temperature. It is generally understood that light entrainment of the clock depends on a functional circadian oscillator comprising the products of the wc-1 and wc-2 genes as well as those of the frq gene (the FRQ/WCC oscillator). However, various models have been advanced to explain temperature regulation. In nature, light and temperature cues reinforce one another such that transitions from dark to light and/or cold to warm set the clock to subjective morning. In some models, the FRQ/WCC circadian oscillator is seen as essential for temperature-entrained clock-controlled output; alternatively, this oscillator is seen exclusively as part of the light pathway mediating entrainment of a cryptic "driving oscillator" that mediates all temperature-entrained rhythmicity, in addition to providing the impetus for circadian oscillations in general. To identify novel clock-controlled genes and to examine these models, we have analyzed gene expression on a broad scale using cDNA microarrays. Between 2.7 and 5.9% of genes were rhythmically expressed with peak expression in the subjective morning. A total of 1.4-1.8% of genes responded consistently to temperature entrainment; all are clock controlled and all required the frq gene for this clock-regulated expression even under temperature-entrainment conditions. These data are consistent with a role for frq in the control of temperature-regulated gene expression in N. crassa and suggest that the circadian feedback loop may also serve as a sensor for small changes in ambient temperature.  相似文献   

4.
  • 1.1. The house sparrow, Passer domesticus, has a circadian rhthym of metabolism and body temperature.
  • 2.2. Evolutionary adaptation to a hot and humid climate is reflected in the lower metabolism and greater insulation of the Houston population than observed in populations from Ann Arbor, Michigan; Boulder, Colorado and Syracuse, New York.
  • 3.3. There are no significant differences in either body temperature or evaporative water loss of all four populations.
  • 4.4. The Houston population is able to survive higher ambient temperatures than is found in the Ann Arbor, Michigan or Boulder, Colorado population.
  相似文献   

5.
6.
7.
The endolymph flow inside the semicircular ducts is analytically investigated by considering a system of two hydrodynamically interconnected ducts. Rotation of this system adds an amount of motion (momentum) to parts of it. This results in an endolymph flow in generally all vestibular parts. The "external impulses" are the impulses which emerge by rotation of exclusively a particular vestibular part. The real impulses can be calculated from a set of equations which contain the external impulses. Analytical expressions are derived for the initial velocities in the ducts and for the maximum endolymph displacements. These formulae contain the external impulses and the ratios of: (1) the radii of crus commune and ducts (gamma), (2) the lengths of crus commune and ducts (lambda). It was proven that an interconnected system composed of two ducts, and also a system composed of two such semicircular duct systems, behaves as a pure rotation transducer (like a single duct does), also when it is rotated excentrically. Duct systems with polygonal and circular geometries were used to evaluate whether an optimal value of lambda would exist (gamma was already considered elsewhere). Optimum values of lambda in a range of about 0.10-0.52 were found. This rather wide range of values agrees with values from measurements. Optimization of an interconnected duct system appeared to be equal to optimization of a system composed of separate ducts.  相似文献   

8.
Early life nutritional adversity is tightly associated with the development of long-term metabolic disorders. Particularly, maternal obesity and high-fat diets cause high risk of obesity in the offspring. Those offspring are also prone to develop hyperinsulinemia, hepatic steatosis and cardiovascular diseases. However, the precise underlying mechanisms leading to these metabolic dysregulation in the offspring remain unclear. On the other hand, disruptions of diurnal circadian rhythms are known to impair metabolic homeostasis in various tissues including the heart and liver. Therefore, we investigated that whether maternal obesity perturbs the circadian expression rhythms of clock, metabolic and inflammatory genes in offspring heart and liver by using RT-qPCR and Western blotting analysis. Offspring from lean and obese dams were examined on postnatal day 17 and 35, when pups were nursed by their mothers or took food independently. On P17, genes examined in the heart either showed anti-phase oscillations (Cpt1b, Pparα, Per2) or had greater oscillation amplitudes (Bmal1, Tnf-α, Il-6). Such phase abnormalities of these genes were improved on P35, while defects in amplitudes still existed. In the liver of 17-day-old pups exposed to maternal obesity, the oscillation amplitudes of most rhythmic genes examined (except Bmal1) were strongly suppressed. On P35, the oscillations of circadian and inflammatory genes became more robust in the liver, while metabolic genes were still kept non-rhythmic. Maternal obesity also had a profound influence in the protein expression levels of examined genes in offspring heart and liver. Our observations indicate that the circadian clock undergoes nutritional programing, which may contribute to the alternations in energy metabolism associated with the development of metabolic disorders in early life and adulthood.  相似文献   

9.
10.
11.
A Clock polymorphism T to C situated in the 3' untranslated region (3'-UTR) has been associated with human diurnal preference. At first, Clock 3111C had been reported as a marker for evening preference. However these data are controversial, and data both corroborating and denying them have been reported. This study hypothesizes that differences in Clock genotypes could be observed if extreme morning-type subjects were compared with extreme evening-type subjects, and the T3111C and T257G polymorphisms were studied. The possible relationship between both polymorphisms and delayed sleep phase syndrome (DSPS) was also investigated. An interesting and almost complete linkage disequilibrium between the polymorphisms T257G in the 5' UTR region and the T3111C in the 3' UTR region of the Clock gene is described. Almost always, a G in position 257 corresponds to a C in position 3111, and a T in position 257 corresponds to a T in position 3111. The possibility of an interaction of these two regions in the Clock messenger RNA structure that could affect gene expression was analyzed using computer software. The analyses did not reveal an interaction between those two regions, and it is unlikely that this full allele correspondence affects Clock gene expression. These results show that there is no association between either polymorphism T3111C or T257G in the Clock gene with diurnal preference or delayed sleep phase syndrome (DSPS). These controversial data could result from the possible effects of latitude and clock genes interaction on circadian phenotypes.  相似文献   

12.
Gluconeogenesis is de novo glucose synthesis from substrates such as amino acids and is vital when glucose is lacking in the diurnal nutritional fluctuation. Accordingly, genes for hepatic gluconeogenic enzymes exhibit daily expression rhythms, whose detailed regulations under nutritional variations remain elusive. As a first step, we performed general systematic characterization of daily expression profiles of gluconeogenic enzyme genes for phosphoenolpyruvate carboxykinase (PEPCK), cytosolic form (Pck1), glucose-6-phosphatase (G6Pase), catalytic subunit (G6pc), and tyrosine aminotransferase (TAT) (Tat) in the mouse liver. On a standard diet fed ad libitum, mRNA levels of these genes showed robust daily rhythms with a peak or an elevation phase during the late sleep-fasting period in the diurnal feeding/fasting (wake/sleep) cycle. The rhythmicity was preserved in constant darkness, modulated with prolonged fasting, attenuated by Clock mutation, and entrained to varied photoperiods and time-restricted feedings. These results are concordant with the notion that gluconeogenic enzyme genes are under the control of the intrinsic circadian oscillator, which is entrained by the light/dark cycle, and which in turn entrains the feeding/fasting cycle and also drives systemic signaling pathways such as the hypothalamic-pituitary-adrenal axis. On the other hand, time-restricted feedings also showed that the ingestion schedule, when separated from the light/dark cycle, can serve as an independent entrainer to daily expression rhythms of gluconeogenic enzyme genes. Moreover, nutritional changes dramatically modified expression profiles of the genes. In addition to prolonged fasting, a high-fat diet and a high-carbohydrate (no-protein) diet caused modification of daily expression rhythms of the genes, with characteristic changes in profiles of glucoregulatory hormones such as corticosterone, glucagon, and insulin, as well as their modulators including ghrelin, leptin, resistin, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide-1 (GLP-1). Remarkably, high-protein (60% casein or soy-protein) diets activated the gluconeogenic enzyme genes atypically during the wake-feeding period, with paradoxical up-regulation of glucagon, which frequently formed correlation networks with other humoral factors. Based on these results, we propose that daily expression rhythms of gluconeogenic enzyme genes are under the control of systemic oscillator-driven and nutrient-responsive hormones.  相似文献   

13.
In this paper, the circadian pattern of Clock and genes mediated by the Clock was investigated in peripheral lymphocytes of rats. Circadian rhythms of Clock are found under the regimes of constant darkness (DD) and 12-h light-12-h dark (LD12:12h), with the peak phase at CT7 and ZT21, respectively. Ten differential cDNA fragments were identified to be mediated by the Clock, including three known genes (catalase, myelin proteolipid protein, and histone acetylase), four known expressed sequence tags (ESTs), and three novel ESTs. Experiment of the RNA interference revealed that these ESTs were down-regulated by the Clock gene and three of them were identified as clock-controlled genes. Understanding of clock-mediated genes may lead to a new direction in drug design for control of circadian rhythms.  相似文献   

14.
15.
The vertebrate circadian system that controls most biological rhythms is composed of multiple oscillators with varied hierarchies and complex levels of organization and interaction. The retina plays a key role in the regulation of daily rhythms and light is the main synchronizer of the circadian system. To date, the identity of photoreceptors/photopigments responsible for the entrainment of biological rhythms is still uncertain; however, it is known that phototransduction must occur in the eye because light entrainment is lost with eye removal. The retina is also rhythmic in physiological and metabolic activities as well as in gene expression. Retinal oscillators may act like clocks to induce changes in the visual system according to the phase of the day by predicting environmental changes. These oscillatory and photoreceptive capacities are likely to converge all together on selected retinal cells. The aim of this overview is to present the current knowledge of retinal physiology in relation to the circadian timing system.  相似文献   

16.
17.
We constructed a promoter-trap vector pPT6803-1 to isolate circadian clock-controlled promoters in the cyanobacterium Synechocystis sp. strain PCC 6803. The vector contains a promoterless luciferase gene set (luxAB) from Vibrio harveyi that is targeted to a specific site of the Synechocystis genome as a reporter for gene expression. A library was constructed in pPT6803-1 by introducing the genomic DNA fragments upstream of luxAB to transform Synechocystis cells. Of approximately 10,000 Synechocystis transformants, at least 55 (#1-55) showed circadian rhythms of bioluminescence under continuous illumination. Clones #19, #22, and #26 exhibited obviously different waveforms of bioluminescence from each other. Deletion analysis and primer extension experiments mapped the promoters for the clpP, slr1634, and rbpP genes that are responsible for bioluminescence from #19, #22, and #26, respectively.  相似文献   

18.
Clock genes in mammalian peripheral tissues   总被引:13,自引:0,他引:13  
  相似文献   

19.
Autophagy is a vital cellular mechanism that controls the removal of damaged or dysfunctional cellular components. Autophagy allows the degradation and recycling of damaged proteins and organelles into their basic constituents of amino acids and fatty acids for cellular energy production. Under basal conditions, autophagy is essential for the maintenance of cell homeostasis and function. However, during cell stress, excessive activation of autophagy can be destructive and lead to cell death. Autophagy plays a crucial role in the cardiovascular system and helps to maintain normal cardiac function. During ischemia- reperfusion, autophagy can be adaptive or maladaptive depending on the timing and extent of activation. In this review, we highlight the molecular mechanisms and signaling pathways that underlie autophagy in response to cardiac stress and therapeutic approaches to modulate autophagy by pharmacological interventions. Finally, we also discuss the intersection between autophagy and circadian regulation in the heart. Understanding the mechanisms that underlie autophagy following cardiac injury can be translated to clinical cardiology use toward improved patient treatment and outcomes.  相似文献   

20.
Circadian rhythms are endogenous and self-sustained oscillations of multiple biological processes with approximately 24-h rhythmicity. Circadian genes and their protein products constitute the molecular components of the circadian oscillator that form positive/negative feedback loops and generate circadian rhythms. The circadian regulation extends from core clock genes to various clock-controlled genes that include various cell cycle genes. Aberrant expression of circadian clock genes, therefore, may lead to genomic instability and accelerated cellular proliferation potentially promoting carcinogenesis. The current study encompasses the investigation of simultaneous expression of four circadian clock genes (Bmal1, Clock, Per1 and Per2) and three clock-controlled cell cycle genes (Myc, Cyclin D1 and Wee1) at mRNA level and determination of serum melatonin levels in peripheral blood samples of 37 CLL (chronic lymphocytic leukemia) patients and equal number of age- and sex-matched healthy controls in order to indicate association between deregulated circadian clock and manifestation of CLL. Results showed significantly down-regulated expression of Bmal1, Per1, Per2 and Wee1 and significantly up-regulated expression of Myc and Cyclin D1 (P < 0.0001) in CLL patients as compared to healthy controls. When expression of these genes was compared between shift-workers and non-shift-workers within the CLL group, the expression was found more aberrant in shift-workers as compared to non-shift-workers. However, this difference was found statistically significant for Myc and Cyclin D1 only (P < 0.05). Serum melatonin levels were found significantly low (P < 0.0001) in CLL subjects as compared to healthy controls whereas melatonin levels were found still lower in shift-workers as compared to non-shift-workers within CLL group (P < 0.01). Our results suggest that aberrant expression of circadian clock genes can lead to aberrant expression of their downstream targets that are involved in cell proliferation and apoptosis and hence may result in manifestation of CLL. Moreover, shift-work and low melatonin levels may also contribute in etiology of CLL by further perturbing of circadian clock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号