首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nine small radiation shields made to adhere to the case of mobile phones were tested at 914 and 1880 MHz. Five popular products were tested because advertisements typically claim they are up to 99% effective in blocking radio frequency (RF) radiation emitted from mobile phones. Also, four other conceptually unusual products were tested because advertisements typically claim they emit oscillations that counteract the RF radiation from mobile phones. Each shield was tested on the same mobile phone, and measurements were made to compare the absorption of RF energy in the head with and without each shield attached to the phone. The phone was positioned against a head model, and an automated measurement process was used to determine specific absorption rate (SAR) in the same way it is used at Motorola to test the compliance of mobile phones with respect to human exposure limits. The location of the peak SAR was not observed to change with any of the shields attached to the phone, and the 1 g, peak spatial average SAR did not change by any statistically significant amount. These results indicate the small shields are ineffective in reducing the exposure of the head to RF energy emitted by a mobile phone.  相似文献   

2.
The specific absorption rate (SAR) from mobile telephones at horizontal and vertical positions is investigated in human adult and child heads wearing metal-rim spectacles and having metallic implants. The SAR values calculated by Finite Difference Time Domain (FTDT) method are compared to the actual ANSI/IEEE standards and to the 900/1800/2100 MHz electromagnetic radiation limits according to EU standards. Our calculation shows a maximum of the cellular SAR in the child head, which in the case of metallic implant could be as much as 100% higher than in the adult head. The averaging on 1 and 10 g tissue-masses shows SAR generally under the limit of 519/1999/EC standards. However, in the case of 2100 MHz with vertical position of the phone for adults and of the 900 MHz for children with metallic implants the ANSI/IEEE limits are exceeded.  相似文献   

3.
A new human head phantom has been proposed by CENELEC/IEEE, based on a large scale anthropometric survey. This phantom is compared to a homogeneous Generic Head Phantom and three high resolution anatomical head models with respect to specific absorption rate (SAR) assessment. The head phantoms are exposed to the radiation of a generic mobile phone (GMP) with different antenna types and a commercial mobile phone. The phones are placed in the standardized testing positions and operate at 900 and 1800 MHz. The average peak SAR is evaluated using both experimental (DASY3 near field scanner) and numerical (FDTD simulations) techniques. The numerical and experimental results compare well and confirm that the applied SAR assessment methods constitute a conservative approach.  相似文献   

4.
The specific absorption rate (SAR) measurements are carried out for compliance testing of personal 3G Mobile phone. The accuracy of this experimental setup has been checked by comparing the SAR in 10?gm of simulated tissue and an arbitrary shaped box. This has been carried out using a 3G mobile Phone at 1718.5?MHz, in a medium simulating brain and muscle phantom. The SAR measurement system consists of a stepper motor to move a monopole E-field probe in two dimensions inside an arbitrary shaped box. The phantom is filled with appropriate frequency-specific fluids with measured electrical properties (dielectric constant and conductivity). That is close to the average for gray and white matters of the brain at the frequencies of interest (1718.5?MHz). Induced fields are measured using a specially designed monopole probe in its close vicinity. The probe is immersed in the phantom material. The measured data for induced fields are used to compute SAR values at various locations with respect to the mobile phone location. It is concluded that these SAR values are position dependent and well below the safety criteria prescribed for human exposure.  相似文献   

5.
The specific absorption rate (SAR) measurements are carried out for compliance testing of personal 3G Mobile phone. The accuracy of this experimental setup has been checked by comparing the SAR in 10 gm of simulated tissue and an arbitrary shaped box. This has been carried out using a 3G mobile Phone at 1718.5 MHz, in a medium simulating brain and muscle phantom. The SAR measurement system consists of a stepper motor to move a monopole E-field probe in two dimensions inside an arbitrary shaped box. The phantom is filled with appropriate frequency-specific fluids with measured electrical properties (dielectric constant and conductivity). That is close to the average for gray and white matters of the brain at the frequencies of interest (1718.5 MHz). Induced fields are measured using a specially designed monopole probe in its close vicinity. The probe is immersed in the phantom material. The measured data for induced fields are used to compute SAR values at various locations with respect to the mobile phone location. It is concluded that these SAR values are position dependent and well below the safety criteria prescribed for human exposure.  相似文献   

6.
The level and distribution of radiofrequency energy absorbed in a child's head during the use of a mobile phone compared to those in an adult head has been a controversial issue in recent years. It has been suggested that existing methods that are used to determine specific absorption rate (SAR) and assess compliance with exposure standards using an adult head model may not adequately account for potentially higher levels of exposure in children due to their smaller head size. The present study incorporates FDTD computations of locally averaged SAR in two different anatomically correct adult and child head models using the IEEE standard (Std. C95.3-2002) SAR averaging algorithm. The child head models were obtained by linear scaling of the adult head model to replicate the conditions of previous studies reported in the literature and also by transforming the different adult head models based on data on the external shapes of children's heads. The tissue properties of the adult and corresponding child head models were kept the same. In addition, modeling and experimental measurements were made using three spheres filled with a tissue-equivalent mixture to approximate heads of increasing size. Results show that the peak local average SAR over 1 g and 10 g of tissue and the electromagnetic energy penetration depths are about the same in all of the head models under the same exposure conditions. When making interlaboratory comparisons, the model and the SAR averaging algorithm used must be standardized to minimize controversy.  相似文献   

7.
In this work, the numerical dosimetry in human exposure to the electromagnetic fields from antennas of wireless devices, such as those of wireless local area networks (WLAN) access points or phone and computer peripherals with Bluetooth antennas, is analyzed with the objective of assessing guidelines compliance. Several geometrical configurations are considered to simulate possible exposure situations of a person to the fields from WLAN or Bluetooth antennas operating at 2400 MHz. The exposure to radiation from two sources of different frequencies when using a 1800 MHz GSM mobile phone connected via Bluetooth with a hands-free car kit is also considered. The finite-difference time-domain (FDTD) method is used to calculate electric and magnetic field values in the vicinity of the antennas and specific absorption rates (SAR) in a high-resolution model of the human head and torso, to be compared with the limits from the guidelines (reference levels and basic restrictions, respectively). Results show that the exposure levels in worst-case situations studied are lower than those obtained when analyzing the exposure to mobile phones, as could be expected because of the low power of the signals and the distance between the human and the antennas, with both field and SAR values being far below the limits established by the guidelines, even when considering the combined exposure to both a GSM and a Bluetooth antenna.  相似文献   

8.
The existing cell phone certification process uses a plastic model of the head called the Specific Anthropomorphic Mannequin (SAM), representing the top 10% of U.S. military recruits in 1989 and greatly underestimating the Specific Absorption Rate (SAR) for typical mobile phone users, especially children. A superior computer simulation certification process has been approved by the Federal Communications Commission (FCC) but is not employed to certify cell phones. In the United States, the FCC determines maximum allowed exposures. Many countries, especially European Union members, use the "guidelines" of International Commission on Non-Ionizing Radiation Protection (ICNIRP), a non governmental agency. Radiofrequency (RF) exposure to a head smaller than SAM will absorb a relatively higher SAR. Also, SAM uses a fluid having the average electrical properties of the head that cannot indicate differential absorption of specific brain tissue, nor absorption in children or smaller adults. The SAR for a 10-year old is up to 153% higher than the SAR for the SAM model. When electrical properties are considered, a child's head's absorption can be over two times greater, and absorption of the skull's bone marrow can be ten times greater than adults. Therefore, a new certification process is needed that incorporates different modes of use, head sizes, and tissue properties. Anatomically based models should be employed in revising safety standards for these ubiquitous modern devices and standards should be set by accountable, independent groups.  相似文献   

9.
L929 murine fibroblast cells were exposed to radiofrequency (RF) radiation from a time division multiple access wireless phone operating at 835 MHz frequency to determine the effect of RF-radiation energy emitted by wireless phones on ornithine decarboxylase (ODC) activity in cultured cells. Exposure was for 8 h to an average specific absorption rate (SAR) from <1 W/kg up to 15 W/kg. After exposure, cells were harvested and ODC activity was measured. No statistically significant difference in ODC activity was found between RF-radiation-exposed and sham-exposed cells at non-thermal specific absorption rates. At SARs which resulted in measurable heating of the medium, a dose-dependent decrease in enzymatic activity was observed and was shown to be consistent with a comparable decrease caused by non-RF-radiation heating. Thus we observed only the well-known enzyme inhibition due to heating, rather than the previously reported enhancement attributed to RF-radiation exposure.  相似文献   

10.
The existing cell phone certification process uses a plastic model of the head called the Specific Anthropomorphic Mannequin (SAM), representing the top 10% of U.S. military recruits in 1989 and greatly underestimating the Specific Absorption Rate (SAR) for typical mobile phone users, especially children. A superior computer simulation certification process has been approved by the Federal Communications Commission (FCC) but is not employed to certify cell phones. In the United States, the FCC determines maximum allowed exposures. Many countries, especially European Union members, use the “guidelines” of International Commission on Non-Ionizing Radiation Protection (ICNIRP), a non governmental agency. Radiofrequency (RF) exposure to a head smaller than SAM will absorb a relatively higher SAR. Also, SAM uses a fluid having the average electrical properties of the head that cannot indicate differential absorption of specific brain tissue, nor absorption in children or smaller adults. The SAR for a 10-year old is up to 153% higher than the SAR for the SAM model. When electrical properties are considered, a child's head's absorption can be over two times greater, and absorption of the skull's bone marrow can be ten times greater than adults. Therefore, a new certification process is needed that incorporates different modes of use, head sizes, and tissue properties. Anatomically based models should be employed in revising safety standards for these ubiquitous modern devices and standards should be set by accountable, independent groups.  相似文献   

11.
This study intends to discuss enclosed a realistic approach to determine and analyze the effects of radio frequency on human exposure inside a cylindrical enclosure. A scenario in which a mobile phone with inverted-F antenna (IFA) operating in the Global System for Mobile Communication (GSM) band (900 MHz) is used inside a cylindrical enclosure. Metallic enclosures are known to have resonance and reflection effects, thereby increasing electric field strength and hence resulting in a change of the human exposure to electromagnetic absorptions. So, this study examines and compares the levels of absorption in terms of specific absorption rate (SAR) values under various conditions. In this study, a human phantom with dielectric properties is designed and its interaction is studied with IFA inside fully enclosed cylindrical enclosures. The results show that SAR values are increased inside cylindrical enclosures compared with those in free space. The method of computation uses method of moments. Simulations are done in FEKO software.  相似文献   

12.
The so-called carousel setup has been widely utilized for testing the hypotheses of adverse health effects on the central nervous system (CNS) due to mobile phone exposures in the frequency bands 800-900 MHz. The objectives of this article were to analyze the suitability of the setup for the upper mobile frequency range, i.e., 1.4-2 GHz, and to conduct a detailed experimental and numerical dosimetry for the setup at the IRIDIUM frequency band of 1.62 GHz. The setup consists of a plastic base on which ten rats, restrained in radially positioned tubes, are exposed to the electromagnetic field emanating from a sleeved dipole antenna at the center. Latest generation miniaturized dosimetric E field and temperature probes were used to measure the specific absorption rate (SAR) inside the brain of three rat cadavers of the Lewis strain and two rat cadavers of the Fisher 344 strain. A numerical analysis was conducted on the basis of three numerical rat phantoms with voxel sizes between 1.5 and 0.125 mm3 that are based on high resolution MRI scans of a 300 g male Wistar rat and a 370 g male Sprague-Dawley rat. The average of the assessed SAR values in the brain was 2.8 mW/g per W antenna input power for adult rats with masses between 220 and 350 g and 5.3 mW/g per W antenna input power for a juvenile rat with a mass of 95 g. The strong increase of the SAR in the brain with decreasing animal size was verified by simulations of the absorption in numerical phantoms scaled to sizes between 100 and 500 g with three different scaling methods. The study also demonstrated that current rat phantom models do not provide sufficient spatial resolution to perform absolute SAR assessment for the brain tissue. The variation of the SAR(brain)(av) due to changes in position was assessed to be in the range from +15% to -30%. A study on the dependence of the performance of the carousel setup on the frequency revealed that efficiency, defined as SAR(brain)(av) per W antenna input power, and the ratio between SAR(brain)(av) and SAR(body)(av) are optimal in the mobile communications frequency range, i.e., 0.8-3 GHz.  相似文献   

13.
Previous studies comparing SAR difference in the head of children and adults used highly simplified generic models or half-wave dipole antennas. The objective of this study was to investigate the SAR difference in the head of children and adults using realistic EMF sources based on CAD models of commercial mobile phones. Four MRI-based head phantoms were used in the study. CAD models of Nokia 8310 and 6630 mobile phones were used as exposure sources. Commercially available FDTD software was used for the SAR calculations. SAR values were simulated at frequencies 900 MHz and 1747 MHz for Nokia 8310, and 900 MHz, 1747 MHz and 1950 MHz for Nokia 6630. The main finding of this study was that the SAR distribution/variation in the head models highly depends on the structure of the antenna and phone model, which suggests that the type of the exposure source is the main parameter in EMF exposure studies to be focused on. Although the previous findings regarding significant role of the anatomy of the head, phone position, frequency, local tissue inhomogeneity and tissue composition specifically in the exposed area on SAR difference were confirmed, the SAR values and SAR distributions caused by generic source models cannot be extrapolated to the real device exposures. The general conclusion is that from a volume averaged SAR point of view, no systematic differences between child and adult heads were found.  相似文献   

14.
Lee KS  Choi JS  Hong SY  Son TH  Yu K 《Bioelectromagnetics》2008,29(5):371-379
Mobile phones are widely used in the modern world. However, biological effects of electromagnetic radiation produced by mobile phones are largely unknown. In this report, we show biological effects of the mobile phone 835 MHz electromagnetic field (EMF) in the Drosophila model system. When flies were exposed to the specific absorption rate (SAR) 1.6 W/kg, which is the proposed exposure limit by the American National Standards Institute (ANSI), more than 90% of the flies were viable even after the 30 h exposure. However, in the SAR 4.0 W/kg strong EMF exposure, viability dropped from the 12 h exposure. These EMF exposures triggered stress response and increased the production of reactive oxygen species. The EMF exposures also activated extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling, but not p38 kinase signaling. Interestingly, SAR 1.6 W/kg activated mainly ERK signaling and expression of an anti-apoptotic gene, whereas SAR 4.0 W/kg strongly activated JNK signaling and expression of apoptotic genes. In addition, SAR 4.0 W/kg amplified the number of apoptotic cells in the fly brain. These findings demonstrate that the exposure limit on electromagnetic radiation proposed by ANSI triggered ERK-survival signaling but the strong electromagnetic radiation activated JNK-apoptotic signaling in Drosophila.  相似文献   

15.
A framework for the combination of near‐field (NF) and far‐field (FF) radio frequency electromagnetic exposure sources to the average organ and whole‐body specific absorption rates (SARs) is presented. As a reference case, values based on numerically derived SARs for whole‐body and individual organs and tissues are combined with realistic exposure data, which have been collected using personal exposure meters during the Swiss Qualifex study. The framework presented can be applied to any study region where exposure data is collected by appropriate measurement equipment. Based on results derived from the data for the region of Basel, Switzerland, the relative importance of NF and FF sources to the personal exposure is examined for three different study groups. The results show that a 24‐h whole‐body averaged exposure of a typical mobile phone user is dominated by the use of his or her own mobile phone when a Global System for Mobile Communications (GSM) 900 or GSM 1800 phone is used. If only Universal Mobile Telecommunications System (UMTS) phones are used, the user would experience a lower exposure level on average caused by the lower average output power of UMTS phones. Data presented clearly indicate the necessity of collecting band‐selective exposure data in epidemiological studies related to electromagnetic fields. Bioelectromagnetics 34:366–374, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Bahr A  Dorn H  Bolz T 《Bioelectromagnetics》2006,27(4):320-327
An exposure system for investigation of volunteers during simulated GSM and WCDMA mobile phone usage has been designed. The apparatus consists of a dual band antenna with enhanced carrying properties that enables exposure for at least 8 h a day. For GSM a 900 MHz pulse modulated carrier was used. The QPSK modulated WCDMA signal at 1966 MHz comprises a power control scheme, which was designed for investigations of biological effects. The dosimetry of the exposure system by measurements and calculations is described in detail within this paper. It is shown that the SAR distribution of the antenna shows similar characteristics to mobile phones with an integrated antenna. The 10 g averaged localized SAR, normalized to an antenna input power of 1 W and measured in the flat phantom area of the SAM phantom, amounts to 7.82 mW/g (900 MHz) and 10.98 mW/g (1966 MHz). The simulated SAR(10 g) in the Visible Human head model agrees with measured values to within 20%. A variation of the antenna rotation angle results in an SAR(10 g) change below 17%. The increase of the antenna distance by 2 mm with respect to the human head leads to an SAR(10 g) change of 9%.  相似文献   

17.
In this study, a double-negative triangular metamaterial (TMM) structure, which exhibits a resounding electric response at microwave frequency, was developed by etching two concentric triangular rings of conducting materials. A finite-difference time-domain method in conjunction with the lossy-Drude model was used in this study. Simulations were performed using the CST Microwave Studio. The specific absorption rate (SAR) reduction technique is discussed, and the effects of the position of attachment, the distance, and the size of the metamaterials on the SAR reduction are explored. The performance of the double-negative TMMs in cellular phones was also measured in the cheek and the tilted positions using the COMOSAR system. The TMMs achieved a 52.28% reduction for the 10 g SAR. These results provide a guideline to determine the triangular design of metamaterials with the maximum SAR reducing effect for a mobile phone.  相似文献   

18.
19.
A study of the interaction between mobile phone antennas and a human head in the presence of different types of metallic objects, attached and pierced to the compressed ear, is presented in this article. Computed and measured results have been performed by considering a quasi-half-wavelength dipole as the radiating source and measurements with the DASY4 dosimetric assessment system. Two different human head models have been implemented: a homogeneously shaped sphere and a three-level head model with four different kinds of tissue. Antenna input impedance, reflection coefficient, radiation patterns, SAR distribution, absorbed power, and peak SAR values have been computed and measured for diverse scenarios, electromagnetic simulators, and organs. Despite the measuring accuracy limitations of the study, both simulated and measured results suggest that special attention has to be paid to peak SAR averaged values when wearing metallic objects close to the radiation source, since some increment of peak SAR averaged values is expected.  相似文献   

20.
The proximity of a mobile phone to the human eye raises the question as to whether radiofrequency (RF) electromagnetic fields (EMF) affect the visual system. A basic characteristic of the human eye is its light sensitivity, making the visual discrimination threshold (VDThr) a suitable parameter for the investigation of potential effects of RF exposure on the eye. The VDThr was measured for 33 subjects under standardized conditions. Each subject took part in two experiments (RF-exposure and sham-exposure experiment) on different days. In each experiment, the VDThr was measured continuously in time intervals of about 10 s for two periods of 30 min, having a break of 5 min in between. The sequence of the two experiments was randomized, and the study was single blinded. During the RF exposure, a GSM signal of 902.4 MHz (pulsed with 217 Hz) was applied to the subjects. The power flux density of the electromagnetic field at the subject location (in the absence of the subject) was 1 W/m(2), and numerical dosimetry calculations determined corresponding maximum local averaged specific absorption rate (SAR) values in the retina of SAR(1 g) = 0.007 W/kg and SAR(10 g) = 0.003 W/kg. No statistically significant differences in the VDThr were found in comparing the data obtained for RF exposure with those for sham exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号