首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secondary transporters of the bacterial CitMHS family transport citrate in complex with a metal ion. Different members of the family are specific for the metal ion in the complex and have been shown to transport Mg(2+)-citrate, Ca(2+)-citrate or Fe(3+)-citrate. The Fe(3+)-citrate transporter of Streptococcus mutans clusters on the phylogenetic tree on a separate branch with a group of transporters found in the phylum Firmicutes which are believed to be involved in anaerobic citrate degradation. We have cloned and characterized the transporter from Enterococcus faecalis EfCitH in this cluster. The gene was functionally expressed in Escherichia coli and studied using right-side-out membrane vesicles. The transporter catalyzes proton-motive-force-driven uptake of the Ca(2+)-citrate complex with an affinity constant of 3.5 microm. Homologous exchange is catalyzed with a higher efficiency than efflux down a concentration gradient. Analysis of the metal ion specificity of EfCitH activity in right-side-out membrane vesicles revealed a specificity that was highly similar to that of the Bacillus subtilis Ca(2+)-citrate transporter in the same family. In spite of the high sequence identity with the S. mutans Fe(3+)-citrate transporter, no transport activity with Fe(3+) (or Fe(2+)) could be detected. The transporter of E. faecalis catalyzes translocation of citrate in complex with Ca(2+), Sr(2+), Mn(2+), Cd(2+) and Pb(2+) and not with Mg(2+), Zn(2+), Ni(2+) and Co(2+). The specificity appears to correlate with the size of the metal ion in the complex.  相似文献   

2.
Citrate uptake in Bacillus subtilis is stimulated by a wide range of divalent metal ions. The metal ions were separated into two groups based on the expression pattern of the uptake system. The two groups correlated with the metal ion specificity of two homologous B. subtilis secondary citrate transporters, CitM and CitH, upon expression in Escherichia coli. CitM transported citrate in complex with Mg(2+), Ni(2+), Mn(2+), Co(2+), and Zn(2+) but not in complex with Ca(2+), Ba(2+), and Sr(2+). CitH transported citrate in complex with Ca(2+), Ba(2+), and Sr(2+) but not in complex with Mg(2+), Ni(2+), Mn(2+), Co(2+), and Zn(2+). Both transporters did not transport free citrate. Nevertheless, free citrate uptake could be demonstrated in B. subtilis, indicating the expression of at least a third citrate transporter, whose identity is not known. For both the CitM and CitH transporters it was demonstrated that the metal ion promoted citrate uptake and, vice versa, that citrate promoted uptake of the metal ion, indicating that the complex is the transported species. The results indicate that CitM and CitH are secondary transporters that transport complexes of divalent metal ions and citrate but with a complementary metal ion specificity. The potential physiological function of the two transporters is discussed.  相似文献   

3.
Secondary transporters of citrate in complex with metal ions belong to the bacterial CitMHS family, about which little is known. The transport of metal-citrate complexes in Streptomyces coelicolor has been investigated. The best cofactor for citrate uptake in Streptomyces coelicolor is Fe(3+), but uptake was also noted for Ca(2+), Pb(2+), Ba(2+), and Mn(2+). Uptake was not observed with the Mg(2+), Ni(2+), or Co(2+) cofactor. The transportation of iron- and calcium-citrate makes these systems unique among the CitMHS family members reported to date. No complementary uptake akin to that observed for the CitH (Ca(2+), Ba(2+), Sr(2+)) and CitM (Mg(2+), Ni(2+), Mn(2+), Co(2+), Zn(2+)) systems of Bacillus subtilis was noted. Competitive experiments using EGTA confirmed that metal-citrate complex formation promoted citrate uptake. Uptake of free citrate was not observed. The open reading frame postulated as being responsible for the metal-citrate transport observed in Streptomyces coelicolor was cloned and overexpressed in Escherichia coli strains with the primary Fe(3+)-citrate transport system (fecABCDE) removed. Functional expression was successful, with uptake of Ca(2+)-citrate, Fe(3+)-citrate, and Pb(2+)-citrate observed. No free-citrate transport was observed in IPTG (isopropyl-beta-d-thiogalactopyranoside)-induced or -uninduced E. coli. Metabolism of the Fe(3+)-citrate and Ca(2+)-citrate complexes, but not the Pb(2+)-citrate complex, was observed. Rationalization is based on the difference in metal-complex coordination upon binding of the metal by citrate.  相似文献   

4.
Nramp1 regulates macrophage activation in infectious and autoimmune diseases. Nramp2 controls anaemia. Both are divalent cation (Fe(2+), Zn(2+), and Mn(2+)) transporters; Nramp2 a symporter of H(+) and metal ions, Nramp1 a H(+)/divalent cation antiporter. This provides a model for metal ion homeostasis in macrophages. Nramp2, localised to early endosomes, delivers extracellularly acquired divalent cations into the cytosol. Nramp1, localised to late endosomes/lysosomes, delivers divalent cations from the cytosol to phagolysosomes. Here, Fe(2+) generates antimicrobial hydroxyl radicals via the Fenton reaction. Zn(2+) and Mn(2+) may also influence endosomal metalloprotease activity and phagolysosome fusion. The many cellular functions dependent on metal ions as cofactors may explain the multiple pleiotropic effects of Nramp1, and its complex roles in infectious and autoimmune disease.  相似文献   

5.
The transport of metal micronutrients to developing organs in a plant is mediated primarily by the sieve elements. Ligands are thought to form complexes with the free ions in order to prevent cellular damage, but no binding partners have been unequivocally identified from plants so far. This study has used the phloem-mediated transport of micronutrients during the germination of the castor bean seedling to identify an iron transport protein (ITP). It is demonstrated that essentially all (55)Fe fed to seedlings is associated with the protein fraction of phloem exudate. It is shown that ITP carries iron in vivo and binds additional iron in vitro. ITP was purified to homogeneity from minute amounts of phloem exudate using immobilized metal ion affinity chromatography. It preferentially binds to Fe(3+) but not to Fe(2+) and also complexes Cu(2+), Zn(2+), and Mn(2+) in vitro. The corresponding cDNA of ITP was cloned using internal peptide fragments. The deduced protein of 96 amino acids shows high similarity to the stress-related family of late embryogenesis abundant proteins. Its predicted characteristics and its RNA expression pattern are consistent with a function in metal ion binding. The ITP from Ricinus provides the first identified micronutrient binding partner for phloem-mediated long distance transport in plants and is the first member of the late embryogenesis abundant protein family shown to have such a function.  相似文献   

6.
Magnesium (Mg(2+)) plays critical role in many physiological processes. The mechanism of Mg(2+) transport has been well documented in bacteria; however, less is known about Mg(2+) transporters in eukaryotes. The AtMRS2 family, which consists of 10 Arabidopsis genes, belongs to a eukaryotic subset of the CorA superfamily proteins. Proteins in this superfamily have been identified by a universally conserved GlyMetAsn motif and have been characterized as Mg(2+) transporters. Some members of the AtMRS2 family, including AtMRS2-10, may complement bacterial mutants or yeast mutants that lack Mg(2+) transport capabilities. Here, we report the purification and functional reconstitution of AtMRS2-10 into liposomes. AtMRS2-10, which contains an N-terminal His-tag, was expressed in Escherichia coli and solubilized with sarcosyl. The purified AtMRS2-10 protein was reconstituted into liposomes. AtMRS2-10 was inserted into liposomes in a unidirectional orientation. Direct measurement of Mg(2+) uptake into proteoliposomes revealed that reconstituted AtMRS2-10 transported Mg(2+) without any accessory proteins. Mutation in the GMN motif, M400 to I, inactivated Mg(2+) uptake. The AtMRS2-10-mediated Mg(2+) influx was blocked by Co(III)hexamine, and was independent of the external pH from 5 to 9. The activity of AtMRS2-10 was inhibited by Co(2+) and Ni(2+); however, it was not inhibited by Ca(2+), Fe(2+), or Fe(3+). While these results indicate that AtMRS2-10 has similar properties to the bacterial CorA proteins, unlike bacterial CorA proteins, AtMRS2-10 was potently inhibited by Al(3+). These studies demonstrate the functional capability of the AtMRS2 proteins in proteoliposomes to study structure-function relationships.  相似文献   

7.
Abnormally high concentrations of Zn(2+), Cu(2+), and Fe(3+) are present along with amyloid-β (Aβ) in the senile plaques in Alzheimer disease, where Al(3+) is also detected. Aβ aggregation is the key pathogenic event in Alzheimer disease, where Aβ oligomers are the major culprits. The fundamental mechanism of these metal ions on Aβ remains elusive. Here, we employ 4,4'-Bis(1-anilinonaphthalene 8-sulfonate) and tyrosine fluorescence, CD, stopped flow fluorescence, guanidine hydrochloride denaturation, and photo-induced cross-linking to elucidate the effect of Zn(2+), Cu(2+), Fe(3+), and Al(3+) on Aβ at the early stage of the aggregation. Furthermore, thioflavin T assay, dot blotting, and transmission electron microscopy are utilized to examine Aβ aggregation. Our results show that Al(3+) and Zn(2+), but not Cu(2+) and Fe(3+), induce larger hydrophobic exposures of Aβ conformation, resulting in its significant destabilization at the early stage. The metal ion binding induces Aβ conformational changes with micromolar binding affinities and millisecond binding kinetics. Cu(2+) and Zn(2+) induce similar assembly of transiently appearing Aβ oligomers at the early state. During the aggregation, we found that Zn(2+) exclusively promotes the annular protofibril formation without undergoing a nucleation process, whereas Cu(2+) and Fe(3+) inhibit fibril formation by prolonging the nucleation phases. Al(3+) also inhibits fibril formation; however, the annular oligomers co-exist in the aggregation pathway. In conclusion, Zn(2+), Cu(2+), Fe(3+), and Al(3+) adopt distinct folding and aggregation mechanisms to affect Aβ, where Aβ destabilization promotes annular protofibril formation. Our study facilitates the understanding of annular Aβ oligomer formation upon metal ion binding.  相似文献   

8.
The transport of Fe(2+) and other divalent transition metal ions across the intestinal brush border membrane (BBM) was investigated using brush border membrane vesicles (BBMVs) as a model. This transport is an energy-independent, protein-mediated process. The divalent metal ion transporter of the BBM is a spanning protein, very likely a protein channel, that senses the phase transition of the BBM, as indicated by a break in the Arrhenius plot. The transporter has a broad substrate range that includes Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+). Under physiological conditions the transport of divalent metal ions is proton-coupled, leading to the acidification of the internal cavity of BBMVs. The divalent metal ion transporter can be solubilized in excess detergent (30 mM diheptanoylphosphatidylcholine or 1% Triton X-100) and reconstituted into an artificial membrane system by detergent removal. The reconstituted membrane system showed metal ion transport characteristics similar to those of the original BBMVs. The properties of the protein described here closely resemble those of the proton-coupled divalent cation transporter (DCT1, Nramp2) described by, Nature. 388:482-488). We may conclude that a protein of the Nramp family is present in the BBM, facilitating the transport of Fe(2+) and other divalent transition metal ions.  相似文献   

9.
D C Harris 《Biochemistry》1977,16(3):560-564
Transferrin, the serum serum iron-transport protein which can bind two metal ions at physiologic pH, binds just one Fe3+, VO2+, or Cr3+ ion at pH 6.0. Fe3+ and VO2+ appear to be bound at the same site, designated A, based on electron paramagnetic resonance (EPR) spectra of VO2+-transferrin and (Fe3+)1(VO2+)1-transferrin. The EPR spectra of (Cr3+)1(VO2+)1-transferrin and of (Cr3+), (FE3+)1-transferrin indicate that that Cr3+ is bound to site B at pH 6.0. Transferrin was labeled at site A with 59Fe at pH 6.0 and at site B with 55Fe at pH 7.5. When the pH of the resulting preparation was lowered to 6.3 and the dissociated iron was separated by gel filtration, about ten times as much 55Fe as 59Fe was lost. The same EPR and isotopic-labeling experiments showed that Fe3+ added to transferrin at pH 7.5 binds to site A with about 90% selectivity.  相似文献   

10.
Yeast membrane proteins SMF1, SMF2, and SMF3 are homologues of the DCT1 metal ion transporter family. Their functional characteristics and the implications of these characteristics in vivo have not yet been reported. Here we show that SMF1 expressed in Xenopus oocytes mediates H(+)-dependent Fe(2+) transport and uncoupled Na(+) flux. SMF1-mediated Fe(2+) transport exhibited saturation kinetics (K(m) = 2.2 microM), whereas the Na(+) flux did not, although both processes were electrogenic. SMF1 is also permeable to Li(+), Rb(+), K(+), and Ca(2+), which likely share the same uncoupled pathway. SMF2 (but not SMF3) mediated significant increases in both Fe(2+) and Na(+) transport compared with control oocytes. These data are consistent with the concept that uptake of divalent metal ions by SMF1 and SMF2 is essential to yeast cell growth. Na(+) inhibited metal ion uptake mediated by SMF1 and SMF2 expressed in oocytes. Consistent with this, we found that increased sensitivity of yeast to EGTA in the high Na(+) medium is due to inhibition of SMF1- and SMF2-mediated metal ion transport by uncoupled Na(+) pathway. Interestingly, DCT1 also mediates Fe(2+)-activated uncoupled currents. We propose that uncoupled ion permeabilities in metal ion transporters protect cells from metal ion overload.  相似文献   

11.
12.
Non-enzymic transamination reactions at 85 degrees between various amino acids and alpha-oxoglutaric acid are catalysed by metal ions, e.g. Al(3+), Fe(2+), Cu(2+) and Fe(3+). The reaction is optimum at pH4.0. Of the 14 amino acids studied histidine is the most active. In the presence of Al(3+) histidine transaminates with alpha-oxoglutaric acid, forming glutamic acid and Al(3+)-imidazolylpyruvic acid complex as the end products. However, in the presence of Fe(2+) or Cu(2+) the products are glutamic acid and a 1:2 metal ion-imidazolylpyruvic acid chelate. The greater effectiveness of histidine in these reactions is attributed to the presence of the tertiary imidazole nitrogen atom, which is involved in the formation of stable sparingly soluble metal ion-imidazolylpyruvic acid complexes or chelates as end products of these reactions. Of the metal ions studied only Al(3+), Fe(2+), Fe(3+) and Cu(2+) are effective catalysts for the transamination reactions, and EDTA addition completely inhibits the catalytic effect of the Al(3+). Spectrophotometric evidence is presented to demonstrate the presence of metal ion complexes of Schiff bases of histidine as intermediates in the transamination reactions. These results may contribute to understanding the role of histidine in enzyme catalysis.  相似文献   

13.
Several Arabidopsis CAtion eXchangers (CAXs) encode tonoplast-localized transporters that appear to be major contributors to vacuolar accumulation/sequestration of cadmium (Cd(2+)), an undesirable pollutant ion that occurs in man largely as a result of dietary consumption of aerial tissues of food plants. But, ion-selectivity of individual CAX transporter types remains largely unknown. Here, we transformed Nicotiana tabacum with several CAX genes driven by the Cauliflower Mosaic Virus (CaMV) 35S promoter and monitored divalent cation transport in root-tonoplast vesicles from these plants in order to select particular CAX genes directing high Cd(2+) antiporter activity in root tonoplast. Comparison of seven different CAX genes indicated that all transported Cd(2+), Ca(2+), Zn(2+), and Mn(2+) to varying degrees, but that CAX4 and CAX2 had high Cd(2+) transport and selectivity in tonoplast vesicles. CAX4 driven by the CaMV 35S and FS3 [figwort mosaic virus (FMV)] promoters increased the magnitude and initial rate of Cd(2+)/H(+) exchange in root-tonoplast vesicles. Ion selectivity of transport in root-tonoplast vesicles isolated from FS3::CAX4-expressing plant lines having a range of gene expression was Cd(2+)>Zn(2+)>Ca(2+)>Mn(2+) and the ratios of maximal Cd(2+) (and Zn(2+)) versus maximal Ca(2+) and Mn(2+) transport were correlated with the levels of CAX4 expression. Root Cd accumulation in high CAX4 and CAX2 expressing lines was increased in seedlings grown with 0.02 muM Cd. These observations are consistent with a model in which expression of an Arabidopsis-gene-encoded, Cd(2+)-efficient antiporter in host plant roots results in greater root vacuole Cd(2+) transport activity, increased root Cd accumulation, and a shift in overall root tonoplast ion transport selectivity towards higher Cd(2+) selectivity. Results support a model in which certain CAX antiporters are somewhat more selective for particular divalent cations.  相似文献   

14.
Five metallic cations (Fe(3+), Cr(3+), Ca(2+), Mg(2+), Mn(2+); concentration range, 1.85 x 10(-4) to 37 x 10(-4)m) were incorporated individually as chlorides into nutrient broth and agar media used for the recovery of phenol-treated Escherichia coli. The effects observed varied with the concentration and the ionic species. In nutrient agar, Fe(3+) and Cr(3+) were generally beneficial but were toxic at 37 x 10(-4)m. Of the divalent ions tested, Ca(2+) and Mg(2+) usually gave higher counts in nutrient broth, except at a concentration of 9.25 x 10(-4)m, whereas the effect of Mn(2+) was rather variable. Two possible explanations are suggested to explain these effects. Toxic materials may be removed from the media by the precipitates formed on the addition of Fe(3+) or Cr(3+), or, in the case of the divalent ions, the integrity of the bacterial cell membranes may be maintained.  相似文献   

15.
Piroxicam (=Hpir) is a non-steroidal anti-inflammatory and an anti-arthritic drug. VO(2+), Mn(2+), Fe(3+), MoO(2)(2+) and UO(2)(2+) complexes with deprotonated piroxicam have been prepared and characterized with the use of infrared, UV-Vis, nuclear magnetic resonance and electron paramagnetic resonance spectroscopies. The experimental data suggest that piroxicam acts as a deprotonated bidentate ligand in all complexes and is coordinated to the metal ion through the pyridine nitrogen and the amide oxygen. Molecular mechanics calculations in the gas state have been performed in order to propose a model for the Fe(3+), VO(2+) and MoO(2)(2+) complexes. Potential anticancer cytostatic and cytotoxic effects of piroxicam complexes with VO(2+), Mn(2+) and MoO(2)(2+) on human promyelocytic leukemia HL-60 cells have been investigated. Among all complexes, only VO(pir)(2)(H(2)O) clearly induces apoptosis after 24-h incubation, whereas piroxicam induces apoptosis after 57-h incubation.  相似文献   

16.
TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions   总被引:18,自引:0,他引:18  
Trace metal ions such as Zn(2+), Fe(2+), Cu(2+), Mn(2+), and Co(2+) are required cofactors for many essential cellular enzymes, yet little is known about the mechanisms through which they enter into cells. We have shown previously that the widely expressed ion channel TRPM7 (LTRPC7, ChaK1, TRP-PLIK) functions as a Ca(2+)- and Mg(2+)-permeable cation channel, whose activity is regulated by intracellular Mg(2+) and Mg(2+).ATP and have designated native TRPM7-mediated currents as magnesium-nucleotide-regulated metal ion currents (MagNuM). Here we report that heterologously overexpressed TRPM7 in HEK-293 cells conducts a range of essential and toxic divalent metal ions with strong preference for Zn(2+) and Ni(2+), which both permeate TRPM7 up to four times better than Ca(2+). Similarly, native MagNuM currents are also able to support Zn(2+) entry. Furthermore, TRPM7 allows other essential metals such as Mn(2+) and Co(2+) to permeate, and permits significant entry of nonphysiologic or toxic metals such as Cd(2+), Ba(2+), and Sr(2+). Equimolar replacement studies substituting 10 mM Ca(2+) with the respective divalent ions reveal a unique permeation profile for TRPM7 with a permeability sequence of Zn(2+) approximately Ni(2+) > Ba(2+) > Co(2+) > Mg(2+) >/= Mn(2+) >/= Sr(2+) >/= Cd(2+) >/= Ca(2+), while trivalent ions such as La(3+) and Gd(3+) are not measurably permeable. With the exception of Mg(2+), which exerts strong negative feedback from the intracellular side of the pore, this sequence is faithfully maintained when isotonic solutions of these divalent cations are used. Fura-2 quenching experiments with Mn(2+), Co(2+), or Ni(2+) suggest that these can be transported by TRPM7 in the presence of physiological levels of Ca(2+) and Mg(2+), suggesting that TRPM7 represents a novel ion-channel mechanism for cellular metal ion entry into vertebrate cells.  相似文献   

17.
In the pelagic environment, iron is a scarce but essential micronutrient. The iron acquisition capabilities of selected marine bacteria have been investigated, but the recent proliferation of marine prokaryotic genomes and metagenomes offers a more comprehensive picture of microbial iron uptake pathways in the ocean. Searching these data sets, we were able to identify uptake mechanisms for Fe(3+), Fe(2+) and iron chelates (e.g. siderophore and haem iron complexes). Transport of iron chelates is accomplished by TonB-dependent transporters (TBDTs). After clustering the TBDTs from marine prokaryotic genomes, we identified TBDT clusters for the transport of hydroxamate and catecholate siderophore iron complexes and haem using gene neighbourhood analysis and co-clustering of TBDTs of known function. The genomes also contained two classes of siderophore biosynthesis genes: NRPS (non-ribosomal peptide synthase) genes and NIS (NRPS Independent Siderophore) genes. The most common iron transporters, in both the genomes and metagenomes, were Fe(3+) ABC transporters. Iron uptake-related TBDTs and siderophore biosynthesis genes were less common in pelagic marine metagenomes relative to the genomic data set, in part because Pelagibacter ubique and Prochlorococcus species, which almost entirely lacked these Fe uptake systems, dominate the metagenomes. Our results are largely consistent with current knowledge of iron speciation in the ocean, but suggest that in certain niches the ability to acquire siderophores and/or haem iron chelates is beneficial.  相似文献   

18.
Characterization of CAX4, an Arabidopsis H(+)/cation antiporter   总被引:1,自引:0,他引:1  
  相似文献   

19.
20.
Superoxide radicals have been implicated in the pathogenesis of ischemia/reperfusion, aging, and inflammatory diseases. In the present work, we have shown that the Fe(3+) complexes of flavonoids (polyphenols) were much more effective than the uncomplexed flavonoids in protecting isolated rat hepatocytes against hypoxia-reoxygenation injury. The 2:1 flavonoid-metal complexes of Cu(2+), Fe(2+), or Fe(3+) were more effective than the parent compounds in scavenging superoxide radicals generated by xanthine oxidase/hypoxanthine (an enzymatic superoxide-generating system). The 2:1 [flavonoid:Fe(3+)] complexes but not the [deferoxamine:Fe(3+)] complex readily scavenged superoxide radicals. These results suggest that the initial step in superoxide radical scavenging (SRS) activity involves a redox-active flavonoid:Fe(3+) complex. Flavonoid:Fe(3+) complexes should, therefore, be tested as a therapy for the treatment of ischemia/reperfusion injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号