首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the present study was to examine the effects of cumulus cells, cytochalasin B (CB), and taxol on the development of ovine matured oocyte following solid surface vitrification (SSV). In experiment 1, effects of cumulus cells during the vitrification were examined. Survival rates after warming were not different between ovine mature oocytes with cumulus cells and without cumulus cells. After in vitro fertilization, rates of embryonic cleavage and development to blastocyst were not different between these two groups. In experiment 2, the effects of cytochalasin B (CB) on vitrification of ovine matured oocytes were examined. The rates of survived ovine matured oocytes were not significantly different among the treatment with 0, 2.5, 5.0, 7.5 and 10.0 microg/mL CB. After in vitro fertilization, the rate of cleavage was not different between the five treatment groups. However, vitrified oocytes treated with 7.5 or 10.0 microg/mL CB resulted in a higher (8.1+/-4.6% and 7.8+/-2.4% respectively, P<0.05) blastocyst development rate than those of oocytes treated with lower CB concentrations. In Experiment 3, the effects of taxol on vitrification of ovine matured oocytes were examined. The rate of survived oocytes was not significantly different among the taxol treatment group with 0, 0.5, 1.0, and 5.0 microM taxol. After in vitro fertilization, the rates of embryos that reached cleavage were not different between the four treatment groups. However, vitrified oocytes treated with 0.5 microM taxol resulted in a higher blastocyst (10.1%+/-6.3, P<0.05) development rate compared to other treatment groups. In conclusion, no effect of cumulus cells on vitrification of ovine matured oocytes was detected in this study. Pretreatment of ovine matured oocytes with cytoskeletal inhibitor cytochalasin B or taxol have a positive effect and helps to reduce the damage induced by vitrification and is a potential way to improve the development of vitrified/warmed ovine matured oocytes.  相似文献   

2.
The purpose of this study was to determine whether the mitochondrial membrane potential, pro-apoptotic gene expression, and ubiquitylation status of zona pellucida proteins (ZP1, ZP2, and ZP3) of vitrified GV-stage mature oocytes could be protected by treatment with cholesterol-loaded methyl-β-cyclodextrin (CLC) prior to vitrification. Porcine GV oocytes were treated with CLC prior to the vitrification process, and the effects on the mitochondrial membrane potential and ZP ubiquitylation status were determined by JC-1 single staining and western blot assays. We found that porcine GV-stage oocytes were treated with CLC at different concentrations (0.5, 5, and 10 mg/mL) prior to vitrification improved in vitro maturation of these oocytes (P < 0.05). The mitochondrial membrane potential of matured oocyte without vitrification or treated with 5 mg/mL CLC vitrification treatment was higher than that of the 0 mg/mL CLC group and other treatment groups (vitrified) (P < 0.05). The expression of Caspase 3, Caspase 8, and Caspase 9 genes in the high concentration CLC treatment groups (5 and 10 mg/mL) was significantly lower than that in the 0 (vitrified) mg/mL CLC group (P < 0.05). ZPs protein and ZP3 protein ubiquitylation were also higher in the non-vitrified controls, 5 and 10 mg/mL CLC-treated oocytes than in the 0 (vitrified) and 0.5 mg/mL vitrified groups (P < 0.05). Whereas the sperm–oocyte binding capacity was improved in the CLC treatment groups (P < 0.05) but the embryonic development rate was not improved. In conclusion, pretreatment with CLC can improve the survival rate and maturation rate of oocytes and protect their mitochondria and zona pellucida of porcine oocytes from cryodamage during the vitrification process.  相似文献   

3.
The vitrification procedure effects on molecular and cytoskeletal components and on developmental ability of in vitro matured prepubertal ovine oocytes were evaluated. MII oocytes were divided into three groups: (1) vitrified in cryoloops (VTR); (2) exposed to vitrification solutions and rehydrated without being plunged into liquid nitrogen (EXP); (3) without further treatment as a control (CTR). Two hours after treatment, membrane integrity, assessed by propidium iodide/Hoechst staining, was lower in VTR and EXP than in CTR (70.6%, 88.5% and 95.2%, respectively). Cleavage rate after fertilization was statistically different among all groups (21.4%, 45.4% and 82.8% for VTR, EXP and CTR groups respectively; P<0.01). Blastocyst rate in VTR (0.0%) and EXP (2.8%) groups was lower (P<0.01) than in CTR (22.8%). Maturation promoting factor activity was lower (P<0.01) in VTR and EXP groups compared with CTR at both 0 h (82.2%, 83.6% and 100%, respectively) and 2 h (60% and 53.9% and 100%, respectively) after warming. Immediately after warming VTR and EXP oocytes showed a lower rate of normal spindle and chromosome configuration compared to CTR (59.1%, 48.0% and 83.3%, respectively; P<0.01). After 2 h of culture in standard conditions the percentage of oocytes with normal spindle and chromosome organization decreased in both VTR and EXP groups compared to CTR (36.4%, 42.8% versus 87.5%, respectively). In conclusion the exposition to the tested cryoprotectant solution and the vitrification in cryoloops modified cytoskeletal components and alter biochemical pathways that compromise the developmental capacity of prepubertal in vitro matured ovine oocytes.  相似文献   

4.
Oocyte vitrification and assisted oocyte activation have increasingly important roles in assisted reproductive technology. Yet, an important area of concern with matured oocyte cryobiology is that elements of oocytes intimately involved in metaphase‐II arrest may be modified by cryopreservation. By comparing different cellular characteristics of unvitrified, vitrified‐warmed, and unvitrified‐activated oocytes, the present study investigated how vitrification‐warming process may affect developmental competence of in vitro‐matured sheep oocytes following parthenogenetic activation. Structural, ultrastructural, and molecular analyses indicated that the characteristics of vitrified‐warmed oocytes vastly differed from fresh oocytes, instead resembling unvitrified‐activated oocytes. For unvitrified oocytes, the highest blastocyst yield (41.8 ± 0.6%) was achieved using the maximum ionomycin concentration (5 µM), and importantly, the duration of ionomycin treatment was not of utmost importance at this concentration. In contrast, the maximum blastocyst yield of vitrified‐warmed oocytes (28.4 ± 1.4%) was achieved with a minimal duration of ionomycin treatment (1 min), and further extending the duration dramatically reduced developmental potential of vitrified‐warmed oocytes. These results suggested that vitrified‐warmed oocytes may need an activation protocol different from unvitrified oocytes. In this respect, unvitrified oocytes were more sensitive to the concentration rather than the duration of ionomycin treatment when compared with vitrified oocytes, which were sensitive to the treatment duration. These results may provide a platform to improve the potential applications of vitrified oocytes in medicine and agriculture. Mol. Reprod. Dev. 79:434–444, 2012. © Wiley Periodicals, Inc.  相似文献   

5.
This study was designed to evaluate the effects of vitrification on immature porcine and ovine oocytes, collected at a slaughterhouse, by performing vitrification in devices with different volumes. Viability was evaluated both before and after vitrification and maturation. Immediately after warming, the percentage of viable pig oocytes was 81% regardless the type of device, while in the control (after oocyte selection) was 95%. The viability of matured pig oocytes after warming, vitrified in beveled edge open straws (BES) was 6%, in small-open-pulled-straw (SOPS) was 17% and in cryotop was 4%, while the viability of the control group was 86%. The viability and maturation results were similar with all devices. Embryo development (ED) was observed in fresh porcine oocytes with 15% 2-8 cell embryos, 7% morulae and 3% blastocysts, and non-embryo cleavage was observed in warmed oocytes. The viability of sheep oocytes immediately after warming averaged 90% in all devices, while that of the control (after oocyte selection) averaged 95%. The viability of warmed oocytes after maturation was: BES 21%, SOPS 30%, cryotop 21% and control group 86%; while maturation values were 11, 21, 34 and 70%, respectively. After vitrification, the highest ED was achieved with ovine oocytes vitrified in SOPS, with 17% morulae development and it was the only device in which blastocysts developed. A direct relationship was observed between viability and actin filament integrity in both species.  相似文献   

6.
This study was designed to examine the reduced incidence of normal fertilization in vitrified ovine oocytes. After in vitro maturation for 24 h, the oocytes were randomly allocated into three groups: (1) untreated (control), (2) exposed to vitrification solution (VS) without being plunged into liquid nitrogen (toxicity), or (3) vitrified by open-pulled straw method (vitrification). In experiment 1, the treated and control oocytes were matured for another 2 h, and the oocytes were then in vitro fertilized for 12 h to examine sperm penetration. The percentage of monospermy in toxicity group (29.3%) and vitrification group (28.2%) dramatically decreased compared to the control group (45.0%) (P<0.05). To find the mechanism that the VS decreased the monospermy, some treated and control oocytes were used to test the distribution of CG and the resistance of zona pellucida (ZP) to 0.1% pronase E immediately (IVM 24 h), after another 2 h of maturation (IVM 26 h), and after 12 h of in vitro fertilization (IVF 12 h) respectively. Others were used to examine female pronucleus formation after 12 h of culture in fertilization medium with the absence of sperm. The results showed that the percentage of CG completely release in the oocytes (IVM 24 and 26 h) of toxicity group (41.2% and 39.9%) and vitrification group (41.7% and 51.7%) was significantly higher than that of control group (7.1% and 18.4%) (P<0.05). The ZP digestion duration in the oocytes (IVM 26 h) of the toxicity group (435.6 s) and vitrification group (422.3 s) was longer than that of control group (381.6 s) (P<0.05). The percentage of female pronucleus formation in toxicity group (58.7%) and vitrification group (63.9%) was higher than that (8.2%) of control group (P<0.05). The data above demonstrated that the VS containing DMSO and EG could parthenogenetically activate in vitro matured ovine oocytes, resulting in ZP hardening and decreased sperm penetration.  相似文献   

7.
Our aim was to evaluate if loading prepubertal ovine oocyte with trehalose would impact on their further developmental potential in vitro and if it would improve their survival to vitrification procedures. COCs matured in vitro with (TRH) or without (CTR) 100mM trehalose were tested for developmental potential after in vitro fertilization and culture. Trehalose uptake was measured by the antrone spectrophotometric assay. No differences were recorded between the two experimental groups in fertilization rates (91.1 CTR vs 92.5% TRH), cleavage rates calculated on fertilized oocytes (96.1 CTR vs 95.4% TRH), first cleavage kinetic (56.1 CTR vs 51% TRH), and blastocyst rates (14.3 CTR vs 13.0% TRH). Anthrone assay revealed that in TRH group trehalose concentration/oocyte was 2.6microM. MII oocytes were then vitrified using cryoloops in TCM 199 containing 20% FCS, sucrose 0.5M, 16.5% Me(2)SO, 16.5% EG and plunged in LN(2). After warming, oocytes from TRH and CTR groups were tested for membrane integrity using the propidium iodide (PI)/Hoechst differential staining, and for developmental ability after in vitro fertilization. Trehalose in maturation medium affected membrane resistance (P<0.01) to vitrification/warming but not fertilization and cleavage rates. The differential staining showed a lower number of PI positive cells in TRH group compared to CTR one (14.3 vs 24.7%, respectively). Fertilization rates and cleavage rates did not differ between the two groups (55.3 and 41% for TRH and 47.7 and 41.7% for CTR, respectively). In conclusion trehalose in maturation medium stabilizes cell membranes during vitrification/warming of prepubertal ovine oocytes but does not affect fertilization and cleavage rates after warming.  相似文献   

8.
The aim of this study was to evaluate the efficiency of the solid surface vitrification (SSV) and the cryoloop vitrification (CLV) methods to cryopreserve in vitro matured buffalo oocytes. Another objective of the work was to investigate whether the presence of cumulus cells affects the efficiency of oocyte vitrification in this species. In the SSV method, oocytes were vitrified in a solution of 35% ethylene glycol, 5% polyvinyl-pyrrolidone and 0.4% trehalose and they were warmed in a 0.3M trehalose solution. In the CLV method, oocytes were vitrified in 16.5% ethylene glycol and 16.5% dimethyl sulfoxide and warmed in decreasing concentrations of sucrose. The oocytes that survived vitrification were fertilized and cultured in vitro up to the blastocyst stage. Although high survival rates were recorded in all groups, when the oocytes were vitrified by the CLV method in the absence of cumulus cells, the survival rate was significantly (P<0.05) lower. However, the CLV gave a significantly higher cleavage rate compared to the SSV with the denuded oocytes (45% versus 26%, respectively; P<0.05), whereas no differences were found between methods with the cumulus-enclosed oocytes (14% versus 15%, respectively). Blastocysts were produced for the first time from in vitro matured oocytes that were vitrified-warmed in buffalo. Nevertheless, vitrification significantly decreased blastocyst yield, regardless of both the method employed and the presence or absence of cumulus cells.  相似文献   

9.
We evaluated the effect of three different cryodevices on membrane integrity, tubulin polymerization, maturation promoting factor (MPF) activity and developmental competence of in vitro matured (IVM) ovine oocytes. IVM oocytes were exposed during 3 min to 7.5% DMSO and 7.5% ethylene glycol (EG) in TCM199 and 25 sec to 0.5 M sucrose, 16.5% DMSO and 16.5% EG, loaded in open pulled straws (OPS), cryoloops (CL) or cryotops (CT) and immersed into liquid nitrogen. Untreated (CTR) or exposed to vitrification solutions but not cryopreserved (EXP) oocytes were used as controls. After warming, double fluorescent staining evidenced a lower membrane integrity in vitrified groups compared to the controls (P < 0.01). After in vitro fertilization and culture OPS and CL groups evidenced a lower cleavage rate than CT and controls (P < 0.01) while blastocysts were obtained only in CL and EXP, at a lower rate than CTR (P < 0.01). All vitrified groups showed alterations in spindle conformation, which were partially recovered in OPS and CT groups. MPF activity was lower in treated compared to CTR and CT showed the lowest value (P < 0.01). After 2 hr culture MPF activity was restored in all groups except CT. Parthenogenetic activation was higher in treated compared to CTR and CT evidenced the highest value. Our results indicate that cryodevice influences not only the ability to survive cryopreservation but is also associated with molecular alterations which affect developmental competence.  相似文献   

10.
This study evaluated the effects of exposure and/or vitrification of porcine metaphase II (MII) oocytes on their in vitro viability and ultra-structural changes with two experiments. Experiment 1 examined the effect of vitrified oocytes on microtubule localization, mitochondrial morphology, chromosome organization and the developmental rate in IVF control and vitrified oocytes. Oocytes matured for 44 h were subjected to IVF (IVF control). Oocytes matured for 42 h were exposed to cryoprotectants (CPA control), followed by 2h culture, and subjected to IVF. Oocytes vitrified at 42 h post-maturation were warmed, cultured for 2h, and subjected to IVF (vitrified). Experiment 2 evaluated the effect of oocytes freezing on development of ICSI with and without activation and parthenotes. Fresh and vitrified oocytes were subjected to ICSI with and without electrical activation. Cleavage and blastocyst rates were significantly (P<0.05) lower in vitrified IVF, parthenote and ICSI embryos than those in fresh counterparts. Between ICSI embryos from fresh oocytes and vitrified oocytes, the rates of blastocyst were significantly higher (P<0.05) in activated group than the group without activation. Significant differences (P<0.05) were observed in normal spindle configuration of vitrified (43.5%) compared to control (81.0%) oocytes, but no significant difference was observed between CPA exposed and control groups. In conclusion, porcine oocytes at MII stage are very sensitive to vitrification with altered microtubule localization and mitochondrial organization thus resulting in impaired fertilization and embryo development.  相似文献   

11.
This study was conducted to evaluate morphologic differences in pig oocytes matured in vivo and in vitro, with particular reference to the potential relationship between oocyte morphology and the occurrence of polyspermy after in vitro fertilization (IVF). In vivo–matured oocytes were surgically recovered from the oviducts of gilts with ovulated follicles on day 2 of estrus, and in vitro–matured oocytes were obtained by culturing follicular oocytes in a oocyte maturation system that has resulted previously in production of live offspring following IVF. Comparisons were made of the cytoplasm density, the diameter of oocytes with or without zona pellucida (ZP), the thickness of the ZP, the size of the perivitelline space (PVS), ZP dissolution time, and cortical granule (CG) distribution before IVF, and CG exocytosis and polyspermic penetration after IVF. Oviductal oocytes have clear areas in the cytoplasm cortex, while in vitro–matured oocytes have very dense cortex. The diameter of ovulated oocytes with ZPs was significantly (P < 0.001) greater than that of in vitro–matured oocytes. However, no difference was observed in the diameter of the oocyte proper. Significantly (P < 0.001) thicker ZPs and wider PVSs were observed in the ovulated oocytes. The ZPs of ovulated oocytes were not dissolved by exposure to 0.1% pronase within 2 hr, but the ZPs of in vitro–matured oocytes were dissolved within 131.7 ± 7.6 sec. The ZPs of ovulated oocytes, but not of in vitro–matured oocytes, were strongly labeled by a lectin from archis hypogaea that is specific for β-D-Gal(1–3)-D-GalNAc. Polyspermy rate was significantly (P < 0.01) higher for in vitro–matured oocytes (65%) than for ovulated oocytes (28%). CGs of oviductal oocytes appeared more aggregated than those of in vitro–matured oocytes. Most of CGs were released from both groups of oocytes 6 hr after IVF regardless of whether they were polyspermic or monospermic oocytes. These results indicate that in vitro–matured and in vivo–matured pig oocytes possess equal ability to release CGs on sperm penetration. Unknown changes in the extracellular matrix and/or cytoplasm of the oocytes while in the oviduct may play an important role(s) in the establishment of a functional block to polyspermy in pig oocytes. Mol. Reprod. Dev. 49:308–316, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
This study evaluated the efficiency and toxicity of two cryopreservation methods, solid-surface vitrification (SSV) and cryoloop vitrification (CLV), on in vitro matured oocytes and in vivo derived early stage goat embryos. In the SSV method, oocytes were vitrified in a solution of 35% ethylene glycol (EG), 5% polyvinyl-pyrrolidone (PVP), and 0.4% trehalose. Microdrops containing the oocytes were cryopreserved by dropping them on a cold metal surface that was partially immersed in liquid nitrogen. In the cryoloop method, oocytes were transferred onto a film of the CLV solution (20% DMSO, 20% EG, 10mg/ml Ficoll and 0.65 M sucrose) suspended in the cryoloop. The cryoloop was then plunged into the liquid nitrogen. In vivo derived embryos were vitrified using the same procedures. The SSV microdrops were warmed in a solution of 0.3M trehalose and those vitrified with CLV were warmed with incubation in 0.25 and 0.125 M sucrose. Oocytes and embryos vitrified by the SSV method had a significantly lower survival rate than the control (60 and 39% versus 100%, respectively; P<0.05), while the survival rate of CLV oocytes and embryos (89 and 88%, respectively) did not differ from controls. Cleavage and blastocyst rates of the surviving vitrified oocytes (parthenogenetically activated) and embryos (cultured for 9 days) were not significantly different (P>0.05) from the control nor did they differ between vitrification methods. Embryos vitrified with the CLV method gave rise to blastocysts (2/15). Our data demonstrated that the two vitrification methods employed resulted in acceptable levels of survival and cleavage of goat oocytes and embryos.  相似文献   

13.
Cryopreservation of immature oocytes at germinal vesicle (GV) stage would provide a readily available source of oocytes for use in research and allow experiments to be performed irrespective of seasonality or other constraints. This study was designed to evaluate the recovery, viability, maturation status, fertilization events and subsequent development of ovine oocytes vitrified at GV stage using solid surface vitrification (SSV). Cumulus oocyte complexes (COCs) obtained from mature ewes were randomly divided into three groups (1) SSV (oocytes were vitrified using SSV), (2) EXP (oocytes were exposed to vitrification and warming solutions without vitrification) or (3) Untreated (control). Following vitrification and warming, viable oocytes were matured in vitro for 24h. After that, nuclear maturation was evaluated using orcein staining. Matured oocytes were fertilized and cultured in vitro for 7days. Following SSV, 75.7% 143/189 oocytes were recovered. Of those oocytes recovered 74.8%, 107/143 were morphologically normal (viable). Frequencies of in vitro maturation were significantly (P<0.01) decreased in SSV and EXP groups as compared to control. In vitro fertilization rates were significantly (P<0.01) decreased in SSV (39.3%) group as compared to EXP (56.4%) and control (64.7%) groups. Cleavage at 48h post insemination (pi) and development to the blastocyst stage on day 7 pi were significantly (P<0.001) decreased in SSV oocytes as compared to EXP and control groups. In conclusion, immature ovine oocytes vitrified using SSV as a simple and rapid procedure can survive and subsequently be matured, fertilized and cultured in vitro up to the blastocyst stage, although the frequency of development is low.  相似文献   

14.
The aim of this study was to evaluate the effect of cytochalasin B (CCB) pre-treatment before vitrification on ability of immature oocytes from lamb ovaries to progress until metaphase II (MII) stage after vitrification/warming procedure. Cumulus-oocyte complexes (COCs) were obtained from ovaries of lambs, from 80 to 90 days old, collected from a local slaughterhouse. Before vitrification, COCs were randomly distributed in two experimental groups corresponding to the incubation with or without 7.5 microg/ml CCB for 30 min. In order to study cryoprotectant and CCB pre-treatment toxicity (toxicity test), oocytes were exposed to cryoprotectants, with or without CCB pre-treatment, but without plunging into N2 liquid. Vitrification solution was composed by 4.48 M EG plus 3.50 M DMSO supplemented with 0.25 M sucrose. Two-step addition was performed. After vitrification or toxicity test, COCs were matured in bicarbonate-buffered TCM 199 containing 10% foetal calf serum and 10 ng/ml epidermal growth factor. A sample of COCs was directly in vitro matured (control group). Rates of MII oocytes of toxicity groups both, with or without CCB pre-treatment were lower than control group (41.1-50.0 versus 79.9, respectively; P<0.05). After vitrification, a lower number of oocytes progressed to MII stage in comparison with non-vitrification groups (P<0.05). In vitrified groups both with or without CCB pre-treatment 8.0 and 12.7%, respectively, of immature oocytes reached MII stage by the end of in vitro maturation culture. No effect of CCB was observed, either in the toxicity or vitrified groups. In conclusion, no effect of CCB pre-treatment before vitrification was detected in this study with immature oocytes of pre-pubertal sheep. More studies are needed in order to increase ovine oocyte survival after vitrification.  相似文献   

15.
The purpose of this study was to clarify the relationship of cooling rates (CR) and warming rates (WR) during vitrification with postwarming viability of in vitro-matured bovine oocytes. In Experiment 1, oocytes were vitrified in a solution containing 7.2 M ethylene glycol and 1.0 M sucrose by use of open-pulled glass capillaries with five different outer diameters and were warmed by placement of the capillaries into 0.25 M sucrose solution. The capillaries of 2000-, 1400-, 1000-, 630-, and 440-mm diameters provided CR of 2000, 3000, 5000, 8000, and 12,000 degrees C/min and WR of 5000, 8000, 17,000, 33,000, and 62,000 degrees C/min, respectively. In oocytes vitrified in capillaries of 1400-mm diameter (CR, 3000 degrees C/min; WR, 8000 degrees C/min), the morphological survival rate (86% of vitrified), penetration rate (79% of inseminated), and normal fertilization rate (69% of penetrated) were higher or tended to be higher than those in the other vitrification groups. In Experiment 2, oocytes cooled at 2000, 3000, or 12,000 degrees C/min were warmed at 8000 degrees C/min, and oocytes cooled at 3000 degrees C/min were warmed at 5000, 8000, or 33,000 degrees C/min. Among these CR-WR combinations, cooling of oocytes at 3000 degrees C/min regardless of the WR resulted in higher postwarming survival. These results indicate that survival of in vitro-matured bovine oocytes after vitrification and subsequent warming is improved by a slightly rapid cooling rate in open-pulled glass capillaries compared to that obtained in conventional straws.  相似文献   

16.
《Cryobiology》2015,70(3):428-433
The objective of this study was to develop an effective ultra-rapid vitrification method and evaluate its effect on maturation, developmental competence and development-related gene expression in bovine immature oocytes. Bovine cumulus oocyte complexes were randomly allocated into three groups: (1) controls, (2) liquid nitrogen vitrification, and (3) liquid helium vitrification. Oocytes were vitrified and then warmed, the percentage of morphologically normal oocytes in liquid helium group (89.0%) was significantly higher (P < 0.05) than that of the liquid nitrogen group (81.1%). When the vitrified–thawed oocytes were matured in vitro for 24 h, the maturation rate in liquid helium group (50.6%) was higher (P < 0.05) than liquid nitrogen group (42.6%). Oocytes of liquid helium vitrification had higher cleavage and blastocyst rates (41.1% and 10.0%) than that of liquid nitrogen vitrification (33.0% and 4.5%; P < 0.05) after in vitro fertilization. Moreover, the expression of GDF9 (growth/differentiation factor-9), BAX (apoptosis factor) and ZAR1 (zygote arrest 1) was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) when the vitrified–thawed oocytes were matured 24 h. The expression of these genes was altered after vitrification. Expression of GDF9 and BAX in the liquid helium vitrification group was not significantly different from that of the control, however there were significant differences between the liquid nitrogen vitrification group and control. In conclusion, it was feasible to use liquid helium for vitrifying bovine immature oocytes. There existed an association between the compromised developmental competence and the altered expression levels of these genes for the vitrified oocytes.  相似文献   

17.
Vitrification affects fertilization ability and developmental competence of mammalian oocytes. This effect may be more closely associated with an intracellular calcium rise induced by cryoprotectants. The present study aimed to assess whether addition of Ethylene Glycol Tetraacetic acid (EGTA) to vitrification solution could improve quality and developmental competence of in vitro matured ovine oocytes. Vitrified groups were designed according to the presence or absence of EGTA and/or calcium in base media, including: mPB1+ (modified PBS with Ca2+), mPB1- (modified PBS without Ca2+), mPB1+/EGTA (mPB1+ containing EGTA), mPB1-/EGTA (mPB1- containing EGTA). In vitro development, numerical chromosome abnormalities, hardening of zona pellucida, mitochondrial distribution and function of viable oocytes were evaluated and compared between groups. Quality of blastocysts was assessed by differential and TUNEL staining. Also, mRNA expression levels of six candidate genes (KIF11, KIF2C, CENP-E, KIF20A, KIF4A and KIF2A), were quantitatively evaluated by RT-PCR. Our results showed that calcium-free vitrification and EGTA supplementation can significantly increase the percentage of normal haploid oocytes and maintain normal distribution and function of mitochondria in vitrified ovine oocytes, consequently improving developmental rate after in vitro fertilization. qRT-PCR analysis showed no significant difference in mRNA expression levels of kinesin genes between vitrified and fresh oocytes. Also, the presence of calcium in vitrification solution significantly increased zona hardening. In conclusion, we have shown for the first time that supplementation of vitrification solution with EGTA, as a calcium chelator, improved the ability of vitrified ovine oocytes to preserve mitochondrial distribution and function, as well as normal chromosome segregation.  相似文献   

18.
We have investigated the changes in the mechanical properties of the zona pellucida (ZP), a multilayer glycoprotein coat that surrounds mammalian eggs, that occur after the maturation and fertilization process of the bovine oocyte by using atomic force spectroscopy. The response of the ZP to mechanical stress has been recovered according to a modified Hertz model. ZP of immature oocytes shows a pure elastic behavior. However, for ZPs of matured and fertilized oocyte, a transition from a purely elastic behavior, which occurs when low stress forces are applied, towards a plastic behavior has been observed. The high critical force necessary to induce deformations, which supports the noncovalent long interaction lifetimes of polymers, increases after the cortical reaction. Atomic force microscopy (AFM) images show that oocyte ZP surface appears to be composed mainly of a dense, random meshwork of nonuniformly arranged fibril bundles. More wrinkled surface characterizes matured oocytes compared with immature and fertilized oocytes. From a mechanical point of view, the transition of the matured ZP membrane toward fertilized ZP, through the hardening process, consists of the recovery of the elasticity of the immature ZP while maintaining a plastic transition that, however, occurs with a much higher force compared with that required in matured ZP.  相似文献   

19.
《Cryobiology》2016,72(3):493-498
The objective of this study was to investigate whether developmental competence of mature vitrified–warmed yak (Bos grunniens) oocytes can be enhanced by supplemented insulin-like growth factor I (IGF-1) during in vitro maturation (IVM), and its relationship with the expression of cold-inducible RNA-binding protein (CIRP). In experiment 1, immature yak oocytes were divided into four groups, and IVM supplemented with 0, 50, 100 and 200 ng/mL IGF-1 was evaluated; the mRNA and protein expression levels of CIRP in mature oocytes in the four groups were evaluated using quantitative real-time PCR and western blotting analyses. In experiment 2, the mature yak oocytes in the four groups were cryopreserved using the Cryotop (CT) method, followed by chemical activation and in vitro culture for two days and eight days to determine cleavage, blastocyst rates, and total cell number in the blastocysts. Mature yak oocytes without vitrification served as a control group. The outcomes were as following: (1) the expression of CIRP in the matured oocytes was up-regulated in the IGF-1 groups and was highest expression was observed in the 100 ng/mL IGF-1 treatment group. (2) In the vitrified–warmed groups, the rates of cleavage and blastocyst were also highest in the 100 ng/mL IGF-1 treatment group (81.04 ± 1.06%% and 32.16 ± 1.01%), which were close to the rates observed in groups without vitrification (83.25 ± 0.85% and 32.54 ± 0.34%). The rates of cleavage and blastocyst in the other vitrified–warmed groups were 70.92 ± 1.32% and 27.33 ± 1.31% (0 ng/mL); 72.73 ± 0.74% and 29.41 ± 0.84% (50 ng/mL); 72.43 ± 0.61% and 27.61 ± 0.59% (200 ng/mL), respectively. There was no significant difference in the total cell number per blastocysts between the vitrified–warmed groups and group without vitrification. Thus, we conclude that the enhancement in developmental competence of mature yak vitrified–warmed oocytes after the addition of IGF-1 during IVM might result from the regulation of CIRP expression in mature yak oocytes prior to vitrification.  相似文献   

20.
《Cryobiology》2016,73(3):274-282
Stabilizing the cytoskeleton system during vitrification can improve the post-thaw survival and development of vitrified oocytes. The cytoskeleton stabilizer cytochalasin B (CB) has been used in cryopreservation to improve the developmental competence of vitrified oocytes. To assess the effect of pretreating matured buffalo oocytes with CB before vitrification, we applied 0, 4, 8, or 12 μg/mL CB for 30 min. The optimum concentration of CB treatment (8 μg/mL for 30 min) was then used to evaluate the distribution of microtubules and microfilaments, the expression of the cytoskeleton proteins actin and tubulin, and the developmental potential of matured oocytes that were vitrified-warmed by the Cryotop method. Western blotting demonstrated that vitrification significantly decreased tubulin expression, but that the decrease was attenuated for oocytes pretreated with 8 μg/mL CB before vitrification. After warming and intracytoplasmic sperm injection, oocytes that were pretreated with 8 μg/mL CB before vitrification yielded significantly higher 8-cell and blastocyst rates than those that were vitrified without CB pretreatment. The values for the vitrified groups in all experiments were significantly lower (P < 0.01) than those of the control groups. In conclusion, pretreatment with 8 μg/mL CB for 30 min significantly improves the cytoskeletal structure, expression of tubulin, and development capacity of vitrified matured buffalo oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号