首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxysterols are oxygenated cholesterol derivates that are emerging as a physiologically important group of molecules. Although they regulate a range of cellular processes, only few oxysterol-binding effector proteins have been identified, and the knowledge of their binding mode is limited. Recently, the family of G protein-coupled seven transmembrane-spanning receptors (7TM receptors) was added to this group. Specifically, the Epstein-Barr virus-induced gene 2 (EBI2 or GPR183) was shown to be activated by several oxysterols, most potently by 7α,25-dihydroxycholesterol (7α,25-OHC). Nothing is known about the binding mode, however. Using mutational analysis, we identify here four key residues for 7α,25-OHC binding: Arg-87 in TM-II (position II:20/2.60), Tyr-112 and Tyr-116 (positions III:09/3.33 and III:13/3.37) in TM-III, and Tyr-260 in TM-VI (position VI:16/6.51). Substituting these residues with Ala and/or Phe results in a severe decrease in agonist binding and receptor activation. Docking simulations suggest that Tyr-116 interacts with the 3β-OH group in the agonist, Tyr-260 with the 7α-OH group, and Arg-87, either directly or indirectly, with the 25-OH group, although nearby residues likely also contribute. In addition, Tyr-112 is involved in 7α,25-OHC binding but via hydrophobic interactions. Finally, we show that II:20/2.60 constitutes an important residue for ligand binding in receptors carrying a positively charged residue at this position. This group is dominated by lipid- and nucleotide-activated receptors, here exemplified by the CysLTs, P2Y12, and P2Y14. In conclusion, we present the first molecular characterization of oxysterol binding to a 7TM receptor and identify position II:20/2.60 as a generally important residue for ligand binding in certain 7TM receptors.  相似文献   

2.
3.
Random mutagenesis of the gene for bacteriophage T7 RNA polymerase was used to identify functionally essential amino acid residues of the enzyme. A two-plasmid system was developed that permits the straightforward isolation of T7 RNA polymerase mutants that had lost almost all catalytic activity. It was shown that substitutions of Thr and Ala for Pro at the position 563, Ser for Tyr571, Pro for Thr636, Asp for Tyr639 and of Cys for Phe646 resulted in inactivation of the enzyme. It is noteworthy that all these mutations are limited to two short regions that are highly conservative in sequences of monomeric RNA polymerases.  相似文献   

4.
Residue Tyr-48 in alpha-sarcin is conserved not only within the ribotoxin family, but also within the larger group of extracellular fungal ribonucleases, best represented by RNase T1. A mutant protein in which this Tyr residue was substituted by Phe has been produced and isolated to homogeneity. It was spectroscopically analyzed by means of circular dichroism, fluorescence emission and NMR. Taken together, these results and those from enzyme characterization have revealed the essential role of the -OH group from the Tyr-48 phenolic ring in the cleavage of polymeric RNA substrates, including the ribosome-embedded 28S rRNA, the natural substrate of ribotoxins. Thus, the mutant protein does not degrade its natural ribosomal RNA substrate. However, it has been shown that this Y48F mutant still retains its ability to cleave a phosphodiester bond in a minimal substrate such as the dinucleoside phosphate ApA. The role of different alpha-sarcin residues within the enzyme reaction catalyzed by this protein is discussed.  相似文献   

5.
The glucocorticoid receptor (GR) interacts specifically with glucocorticoids, whereas its closest relative, the mineralocorticoid receptor (MR), interacts with both glucocorticoids and mineralocorticoids, such as aldosterone. To investigate the mechanism underlying the glucocorticoid/mineralocorticoid specificity of the GR, we used a yeast model system to screen for GR ligand-binding domain mutants, substituted with MR residues in the segment 565-574, that can be efficiently activated by aldosterone. In all such increased activity mutants, valine 571 was replaced by methionine, even though most mutants also contained substitutions of other residues with their MR counterparts. Further analysis in yeast and COS-7 cells has revealed that the identity of residue 571 determines the behavior of other MR substituted residues in the 565-574 segment. Generally, MR substitutions in this region are only consistent with aldosterone binding if residue 571 is also replaced with methionine (MR conformation). If residue 571 is valine (GR conformation), most other MR substitution mutants drastically reduce interaction with both mineralocorticoid and glucocorticoid hormones. Based on these functional data, we hypothesize that residue 571 functions as a regional organizer involved in discriminating between glucocorticoid and mineralocorticoid hormones. We have used a molecular model of the GR ligand-binding domain in an attempt to interpret our functional data in structural terms.  相似文献   

6.
7.
Insulin stimulated autophosphorylation of the beta-subunit of the insulin receptor purified from Fao hepatoma cells or purified from Chinese hamster ovary (CHO/HIRC) or Swiss 3T3 (3T3/HIRC) cells transfected with the wild-type human insulin receptor cDNA. Autophosphorylation of the purified receptor occurred in at least two regions of the beta-subunit: the regulatory region containing Tyr-1146, Tyr-1150, and Tyr-1151, and the C-terminus containing Tyr-1316 and Tyr-1322. In the presence of antiphosphotyrosine antibody (alpha-PY), autophosphorylation of the purified receptor was inhibited nearly 80% during insulin stimulation. Tryptic peptide mapping showed that alpha-PY inhibited autophosphorylation of both tyrosyl residues in the C-terminus and one tyrosyl residue in the regulatory region, either Tyr-1150 or Tyr-1151. Thus, a bis-phosphorylated form of the regulatory region accumulated in the presence of alpha-PY, which contained Tyr(P)-1146 and either Tyr(P)-1150 or 1151. In intact Fao, CHO/HIRC, and 3T3/HIRC cells, insulin stimulated tyrosyl phosphorylation of the beta-subunit of the insulin receptor. Tryptic peptide mapping indicated that the regulatory region of the beta-subunit was mainly (greater than 80%) bis-phosphorylated; however, all three tyrosyl residues of the regulatory region were phosphorylated in about 20% of the receptors. As the phosphotransferase was activated by tris-phosphorylation but not bis-phosphorylation of the regulatory region of the beta-subunit (White et al.: Journal of Biological Chemistry 263:2969-2980, 1988), the extent of autophosphorylation in the regulatory region may play an important regulatory role during signal transmission in the intact cell.  相似文献   

8.
This work uses alpha-conotoxin PnIB to probe the agonist binding site of neuronal alpha(7) acetylcholine receptors. We mutated the 13 non-cysteine residues in CTx PnIB, expressed alpha(7)/5-hydroxytryptamine-3 homomeric receptors in 293 HEK cells, and measured binding of each mutant toxin to the expressed receptors by competition against the initial rate of (125)I-alpha-bungarotoxin binding. The results reveal that residues Ser-4, Leu-5, Pro-6, Pro-7, Ala-9, and Leu-10 endow CTx PnIB with affinity for alpha(7)/5-hydroxytryptamine-3 receptors; side chains of these residues cluster in a localized region within the three-dimensional structure of CTx PnIB. We next mutated key residues in the seven loops of alpha(7) that converge at subunit interfaces to form the agonist binding site. The results reveal predominant contributions by residues Trp-149 and Tyr-93 in alpha(7) and smaller contributions by Ser-34, Arg-186, Tyr-188, and Tyr-195. To identify pairwise interactions that stabilize the receptor-conotoxin complex, we measured binding of receptor and toxin mutations and analyzed the results by double mutant cycles. The results reveal a single dominant interaction between Leu-10 of CTx PnIB and Trp-149 of alpha(7) that anchors the toxin to the binding site. We also find weaker interactions between Pro-6 of CTx PnIB and Trp-149 and between both Pro-6 and Pro-7 and Tyr-93 of alpha(7). The overall results demonstrate that a localized hydrophobic region in CTx PnIB interacts with conserved aromatic residues on one of the two faces of the alpha(7) binding site.  相似文献   

9.
Soluble β-amyloid (Aβ) resides in certain regions of the brain at or near picomolar concentration, rising in level during the prodromic stage of Alzheimer disease. Recently, we identified the homomeric α7 nicotinic acetylcholine receptor (α7-nAChR) as one possible functional target for picomolar Aβ. This study was aimed at addressing which residues in α7-nAChRs potentially interact with Aβ to regulate the presynaptic function of this receptor. Site-directed mutagenesis was carried out to study the key aromatic residues in the mouse α7-nAChR agonist-binding pocket. Mutations of tyrosine188 resulted in a decrease in activation of presynaptic α7-nAChRs by ACh and Aβ but with no change in response to nicotine, indicating the critical role of Tyr-188 in presynaptic regulation by Aβ. Coimmunoprecipitation additionally revealed direct binding of Aβ to α7-nAChRs and to the Tyr-188 mutant receptor. In contrast, mutations of Tyr-195 in α7-nAChR led to decreased activation by nicotine without apparent effects on ACh- or Aβ-induced responses. Agonist-induced responses of Tyr-93 mutant α7-nAChRs indicated possible interactions of nicotine and Aβ with its hydroxyl group, but there was no change in presynaptic responses after mutation of Trp-149. All of the mutants were shown to be expressed on the plasma membrane using cell surface labeling. Together, these results directly demonstrate an essential role for the aromatic residue Tyr-188 as a key component in the agonist binding domain for the activation of α7-nAChRs by Aβ.  相似文献   

10.
The N-methyl-d-aspartate (NMDA) receptors play critical roles in synaptic plasticity, neuronal development, and excitotoxicity. Tyrosine phosphorylation of NMDA receptors by Src-family tyrosine kinases such as Fyn is implicated in synaptic plasticity. To precisely address the roles of NMDA receptor tyrosine phosphorylation, we identified Fyn-mediated phosphorylation sites on the GluR epsilon 2 (NR2B) subunit of NMDA receptors. Seven out of 25 tyrosine residues in the C-terminal cytoplasmic region of GluR epsilon 2 were phosphorylated by Fyn in vitro. Of these 7 residues, Tyr-1252, Tyr-1336, and Tyr-1472 in GluR epsilon 2 were phosphorylated in human embryonic kidney fibroblasts when co-expressed with active Fyn, and Tyr-1472 was the major phosphorylation site in this system. We then generated rabbit polyclonal antibodies specific to Tyr-1472-phosphorylated GluR epsilon 2 and showed that Tyr-1472 of GluR epsilon 2 was indeed phosphorylated in murine brain using the antibodies. Importantly, Tyr-1472 phosphorylation was greatly reduced in fyn mutant mice. Moreover, Tyr-1472 phosphorylation became evident when hippocampal long term potentiation started to be observed, and its magnitude became larger in murine brain. Finally, Tyr-1472 phosphorylation was significantly enhanced after induction of long term potentiation in the hippocampal CA1 region. These data suggest that Tyr-1472 phosphorylation of GluR epsilon 2 is important for synaptic plasticity.  相似文献   

11.
12.
Focal adhesion kinase (FAK) mediates signal transduction in response to multiple extracellular inputs, via tyrosine phosphorylation at specific residues. We recently reported that FAK Tyr-407 phosphorylation negatively regulates the enzymatic and biological activities of FAK, unlike phosphorylation of other tyrosine residues. In this study, we further investigated the effect of FAK Tyr-407 phosphorylation on cell transformation. We found that FAK Tyr-407 phosphorylation was lower in H-Ras transformed NIH3T3 and K-Ras transformed rat-2 fibroblasts than in the respective untransformed control cells. Consistently, FAK Tyr-407 phosphorylation was decreased in parallel with cell transformation in H-Ras-inducible NIH3T3 cells and increased during trichostatin A-induced detransformation of both K-Ras transformed rat-2 fibroblasts and H-Ras transformed NIH3T3 cells. In addition, overexpression of a phosphorylation-mimicking FAK Tyr-407 mutant inhibited morphological transformation of H-Ras-inducible NIH3T3 cells and inhibited invasion activity and anchorage-independent growth of H-Ras-transformed NIH3T3 cells. Taken together, these data strongly suggest that FAK Tyr-407 phosphorylation negatively regulates transformation of fibroblasts.  相似文献   

13.
A large number of mutations were introduced into the carboxy-terminal domain of pp60c-src. The level of phosphorylation on Tyr-416 and Tyr-527, the transforming activity (as measured by focus formation on NIH 3T3 cells), kinase activity, and the ability of the mutant pp60c-src to associate with the middle-T antigen of polyomavirus were examined. The results indicate that Tyr-527 is a major carboxy-terminal element responsible for regulating pp60c-src in vivo. A good but not perfect correlation exists between lack of phosphorylation at Tyr-527 and increased phosphorylation at Tyr-416, between elevated phosphorylation on Tyr-416 and activated kinase activity, and between activated kinase activity and transforming activity. Phosphorylation of Tyr-527 was insensitive to the mutation of adjacent residues, indicating that the primary sequence only has a minor role in recognition by kinases or phosphatases which regulate it in vivo. Three mutants which have in common a modified Glu-524 residue were phosphorylated on Tyr-416 and Tyr-527 and were weakly transforming. This suggests that other mechanisms besides complete dephosphorylation of Tyr-527 can lead to increased phosphorylation of Tyr-416 and activation of the transforming activity of pp60c-src. Furthermore, the residues between Asp-518 and Pro-525 were required to form a stable complex with middle-T antigen. The proximity of these sequences to Tyr-527 suggests a model in which middle-T activates pp60c-src by binding directly to this region of the molecular and thereby preventing phosphorylation of Tyr-527. Alternatively, middle-T binding may mediate a conformational change in this region, which in turn induces an alteration in the level of phosphorylation at Tyr-527 and Tyr-416.  相似文献   

14.
The RNA polymerases encoded by bacteriophages T3 and T7 have similar structures, but exhibit nearly exclusive template specificities. We have determined the nucleotide sequence of the region of T3 DNA that encodes the T3 RNA polymerase (the gene 1.0 region), and have compared this sequence with the corresponding region of T7 DNA. The predicted amino acid sequence of the T3 RNA polymerase exhibits very few changes when compared to the T7 enzyme (82% of the residues are identical). Significant differences appear to cluster in three distinct regions in the amino-terminal half of the protein. Analysis of the data from both enzymes suggests features that may be important for polymerase function. In particular, a region that differs between the T3 and T7 enzymes exhibits significant homology to the bi-helical domain that is common to many sequence-specific DNA binding proteins. The region that flanks the structural gene contains a number of regulatory elements including: a promoter for the E. coli RNA polymerase, a potential processing site for RNase III and a promoter for the T3 polymerase. The promoter for the T3 RNA polymerase is located only 12 base pairs distal to the stop codon for the structural gene.  相似文献   

15.
Active-site cysteine strategically positioned in the P-loop of protein-tyrosine phosphatases has been suggested to be further stabilized by hydrogen bonding arrays radiating out from the P-loop to neighboring residues. In this work, we investigated the structural role of histidine array in HC(X)(5)RS motif of the vaccinia H1-related protein phosphatase (VHR), using site-directed mutagenesis in conjunction with an extensive kinetic analysis. Conserved His-123 was mutated along with neighboring residues Tyr-78 and Thr-73. The increased pK(a) values of active-site Cys-124 found in Y78F and T73A mutants (6.51 and 6.75, respectively) were comparable to those of H123A and H123F mutants. Kinetic evaluation of Y78F and T73A mutants further implicates that the mutations perturb the relative position of Cys-124 within the P-loop. These results imply that Tyr-78 and Thr-73 make up an essential part of the His-123 array and structurally tune the Cys-124 position. Tyr-78 of VHR turns out to be the invariant Tyr reported in several protein-tyrosine phosphatases by a structure-based sequence alignment. Therefore, orientation of the imidazole ring of His-123 by the invariant Tyr-78 is crucial for maintaining the proper position of Cys-124 in the P-loop.  相似文献   

16.
The six tyrosine residues of ribonuclease A (RNase A) are used as individual intrinsic probes for tracking local conformational changes during unfolding. The fluorescence decays of RNase A are well described by sums of three exponentials with decay times (tau(1) = 1.7 ns, tau(2) = 180 ps, and tau(3) = 30 ps) and preexponential coefficients (A(1) = 1, A(2) = 1, and A(3) = 4) at pH 7, 25 degrees C. The decay times are controlled by photo-induced electron transfer from individual tyrosine residues to the nearest disulphide (-SS-), bridge, which is distance (R) dependent. We assign tau(1) to Tyr-76 (R = 12.8 A), tau(2) to Tyr-115 (R = 6.9 A), and tau(3) to Tyr-25, Tyr-73, Tyr-92, and Tyr-97 (all four at R = 5.5 +/- 0.3 A) at 23 degrees C. On the basis of this assignment, the results show that, upon thermal or chemical unfolding only Tyr-25, Tyr-92, and Tyr-76 undergo significant displacement from their nearest -SS- bridge. Despite reporting on different regions of the protein, the concordance between the transition temperatures, T(m), obtained from Tyr-76 (T(m) = 59.2 degrees C) and Tyr-25 and Tyr-92 (T(m) = 58.2 degrees C) suggests a single unfolding event in this temperature range that affects all these regions similarly.  相似文献   

17.
18.
The FhuA outer membrane protein of Escherichia coli actively transports ferrichrome, albomycin, and rifamycin CGP 4832, and confers sensitivity to microcin J25, colicin M, and the phages T1, T5, and phi80. Guided by the FhuA crystal structure and derived predictions on how FhuA might function, mutants were isolated in the cork domain (residues 1 to 160) and in the beta-barrel domain (residues 161 to 714). Deletion of the TonB box (residues 7 to 11) completely inactivated all TonB-dependent functions of FhuA. Fixation of the cork to turn 7 of the barrel through a disulfide bridge between introduced C27 and C533 residues abolished ferrichrome transport, which was restored by reduction of the disulfide bond. Deletion of residues 24 to 31, including the switch helix (residues 24 to 29), which upon binding of ferrichrome to FhuA undergoes a large structural transition (17 A) and exposes the N terminus of FhuA (TonB box) to the periplasm, reduced FhuA transport activity (79% of the wild-type activity) but conferred full sensitivity to colicin M and the phages. Duplication of residues 23 to 30 or deletion of residues 13 to 20 resulted in FhuA derivatives with properties similar to those of FhuA with a deletion of residues 24 to 31. However, a frameshift mutation that changed QSEA at positions 18 to 21 to KKAP abolished almost completely most of FhuA's activities. The conserved residues R93 and R133 among energy-coupled outer membrane transporters are thought to fix the cork to the beta-barrel by forming salt bridges to the conserved residues E522 and E571 of the beta-barrel. Proteins with the E522R and E571R mutations were inactive, but inactivity was not caused by repulsion of R93 by R522 and R571 and of R133 by R571. Point mutations in the cork at sites that move or do not move upon the binding of ferrichrome had no effect or conferred only slightly reduced activities. It is concluded that the TonB box is essential for FhuA activity. The TonB box region has to be flexible, but its distance from the cork domain can greatly vary. The removal of salt bridges between the cork and the barrel affects the structure but not the function of FhuA.  相似文献   

19.
20.
The translocation of DNA helicases on single-stranded DNA and the unwinding of double-stranded DNA are fueled by the hydrolysis of nucleoside triphosphates (NTP). Although most helicases use ATP in these processes, the DNA helicase encoded by gene 4 of bacteriophage T7 uses dTTP most efficiently. To identify the structural requirements of the NTP, we determined the efficiency of DNA unwinding by T7 helicase using a variety of NTPs and their analogs. The 5-methyl group of thymine was critical for the efficient unwinding of DNA, although the presence of a 3′-ribosyl hydroxyl group partially overcame this requirement. The NTP-binding pocket of the protein was examined by randomly substituting amino acids for several amino acid residues (Thr-320, Arg-504, Tyr-535, and Leu-542) that the crystal structure suggests interact with the nucleotide. Although positions 320 and 542 required aliphatic residues of the appropriate size, an aromatic side chain was necessary at position 535 to stabilize NTP for efficient unwinding. A basic side chain of residue 504 was essential to interact with the 4-carbonyl of the thymine base of dTTP. Replacement of this residue with a small aliphatic residue allowed the accommodation of other NTPs, resulting in the preferential use of dATP and the use of dCTP, a nucleotide not normally used. Results from this study suggest that the NTP must be stabilized by specific interactions within the NTP-binding site of the protein to achieve efficient hydrolysis. These interactions dictate NTP specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号