首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: A small proportion of patients suffering from chronic active gastritis are diagnosed with gastric Helicobacter species other than Helicobacter pylori. Circumstantial evidence has suggested that these bacteria, also referred to as "Helicobacter heilmannii"-like organisms (HHLO), may be transmitted through animals. The isolation of a Helicobacter bizzozeronii strain from a human patient confirmed this hypothesis. It was the aim of the present study to assess the presence of animal Helicobacter species and H. pylori in humans infected with HHLO, as diagnosed by histology. METHODS: Paraffin-embedded gastric biopsy specimens of 108 HHLO-infected patients (42 women and 66 men) from three clinical centers were screened for the presence of animal gastric Helicobacter species by polymerase chain reaction (PCR), using assays targeting the 16S rDNA region of the three known canine and feline helicobacters (H. bizzozeronii, H. salomonis and H. felis), "Candidatus H. suis", and "Candidatus H. bovis". In addition, the presence of H. pylori was evaluated by multiplex PCR analysis. RESULTS: In 63.4% of the stomachs (64/101) classification of the Helicobacter infection into the above mentioned groups was achieved. Non-pylori Helicobacter species commonly colonizing the stomachs of cats and dogs were found in 48.5% (49/101) of the patients. Fourteen (13.9%) samples tested positive for "Candidatus H. suis", and "Candidatus H. bovis" was demonstrated in 1 (0.9%) patient. The presence of H. pylori was established in 13 patients (12.9%). Eleven stomachs (10.9%) were infected with at least two different Helicobacter species. CONCLUSIONS: This study identifies animal Helicobacter species in the stomach of a large series of HHLO-infected patients, which may have clinical implications in a subset of patients with gastric disease.  相似文献   

2.
Background. A number of different Helicobacter spp. can colonize the stomach of humans and domestic pets. Difficulties encountered with primary isolation of these spiral microorganisms and their unusual inertia with respect to biochemical reactions still represent considerable obstacles to their characterization with classic tools. In addition, the high degree of similarity in the 16S rRNA sequence hampers differentiation of Helicobacter spp. using routine molecular biological assays.
Materials and Methods. Samples from experimentally monoinfected mice, of naturally infected hosts, and of cultured strains were examined by scanning electron microscopy (SEM). In parallel, all samples were analyzed by molecular techniques to ascertain the Helicobacter spp. involved.
Results. Using the mouse samples as a reference, microorganisms found in naturally infected hosts were identified by SEM as belonging to H. pylori , H. felis , or a group consisting of H. bizzozeronii and H. heilmannii. A further spiral microorganism with unique morphology was found in a dog that was positive for H. salomonis , but the organism could not be recovered from experimentally infected mice. In culture, most Helicobacter strains lost their ultrastructural characteristics.
Conclusions. When gastric Helicobacter spp. were collected from their natural habitat and examined by SEM, relevant differences could be detected between H. felis , H. bizzozeronii and H. heilmannii , and H. salomonis , respectively. SEM, therefore, seems to be a useful auxillary tool for the distinction of various gastric Helicobacter spp. as based on their ultrastructure.  相似文献   

3.
Helicobacter pylori is the most common gastric bacteria of human beings. Animal-borne helicobacter have been associated with gastritis, ulceration, and gastric mucosa-associated lymphoid-tissue lymphoma in people. We attempted to identify the species of Helicobacter spp. that infect human beings in north Paran , Brazil. Samples of gastric mucosa from 38 dyspeptic patients were analyzed by optic microscopy on silver stained slides, polimerase chain reaction (PCR), and enzymatic cleavage. Genus and species-specific primers to H. pylori, H. heilmannii, H. felis, and consensual primers to H. bizzozeronii or H. salomonis were used. The PCR products were submitted to enzymatic cleavage by VspI (Helicobacter spp. product) and HinfI (species products) enzymes. Thirty-two out of 38 patients evaluated had 3.2 to 5 m long bacteria that resembled H. pylori in Warthin-Starry stained slides and were positive to the genus Helicobacter by PCR. In 30 of these patients the bacteria were identified as H. pylori. Two samples positive by silver stain were negative to all species tested by PCR. None of the 38 samples was positive to animal-origin helicobacter species. These results show that PCR and enzymatic restriction are practical methods to identify the species of helicobacters present in gastric mucosa of human beings. People in north Paran appear to be infected mostly with H. pylori.  相似文献   

4.
A scheme for the rapid identification of Helicobacter spp. using restriction fragment length polymorphism digestion profiles of PCR amplified 23S rRNA genes is described. The efficacy of this scheme for speciation of the closely related gastric species H. felis, H. bizzozeronii and H. salomonis was evaluated. It was difficult to distinguish between some RFLP profiles obtained and often, more than one profile was seen with each species examined. Some evidence was found that the 23S rRNA gene copies of these species may not be identical. Moreover, the identification scheme was ineffective in discriminating these species from each other, although they could be differentiated, as a group, from other Helicobacter spp. The results indicate that this scheme should be carefully evaluated with a number of isolates if it is to be applied to additional, highly related Helicobacter spp.  相似文献   

5.
BACKGROUND: Both various virulence factors of Helicobacter pylori and host factors influence the clinical outcome of H. pylori infection. In animal experiments with Helicobacter felis, large variations in the severity of disease have been observed between different mouse strains infected with a single isolate of H. felis. C57BL/6 J mouse strain that lacks the expression of group IIA phospholipase A2 has been shown to develop more severe gastric inflammation than other mouse strains. Thus, group IIA phospholipase A2 has been suggested to play a role in regulating inflammation in gastric mucosa. The aim of this study was to examine the possible role of group IIA phospholipase A2 in experimental Helicobacter infection. MATERIALS AND METHODS: Transgenic mice expressing human group IIA phospholipase A2 and their group IIA phospholipase A2 deficient nontransgenic C57BL/6 J littermates were infected with H. felis. The mice were killed 3, 8, and 19 weeks after inoculation of bacteria to determine the histopathological changes in gastric mucosa. RESULTS: The infected mice developed chronic inflammation in gastric mucosa. We found no differences in the colonization of bacteria between transgenic and nontransgenic mice. At 3 and 8 weeks, no difference was found in the severity of inflammation between the two groups. Nineteen weeks after the administration of bacteria the inflammation was more marked in nontransgenic than transgenic mice. Group IIA phospholipase A2 was expressed by in situ hybridization in the neck cells of the glandular stomach in transgenic mice. CONCLUSIONS: The results of the present study suggest that the endogenous expression of group IIA phospholipase A2 diminishes chronic inflammation in gastric mucosa in experimental H. felis infection in mice.  相似文献   

6.
Besides the well-known gastric pathogen Helicobacter pylori , other Helicobacter species with a spiral morphology have been detected in a minority of human patients who have undergone gastroscopy. The very fastidious nature of these non- Helicobacter pylori helicobacters (NHPH) makes their in vitro isolation difficult. These organisms have been designated ' Helicobacter heilmannii '. However, sequencing of several genes detected in NHPH-infected tissues has shown that the ' H. heilmannii ' group comprises at least five different Helicobacter species, all of them known to colonize the stomach of animals. Recent investigations have indicated that Helicobacter suis is the most prevalent NHPH species in human. This species has only recently been isolated in vitro from porcine stomach mucosa. Other NHPH that colonize the human stomach are Helicobacter felis, Helicobacter bizzozeronii, Helicobacter salomonis and ' Candidatus Helicobacter heilmannii'. In numerous case reports of human gastric NHPH infections, no substantial information is available about the species status of the infecting strain, making it difficult to link the species with certain pathologies. This review aims to clarify the complex nomenclature of NHPH species associated with human gastric disease and their possible animal origin. It is proposed to use the term 'gastric NHPH' to designate gastric spirals that are morphologically different from H. pylori when no identification is available at the species level. Species designations should be reserved for those situations in which the species is defined.  相似文献   

7.
Background:  In dogs, the gastric Helicobacter spp. have been well studied, but there is little information regarding the other parts of the alimentary system. We sought to determine the spatial distribution of Helicobacter spp. in the gastrointestinal tract and the hepatobiliary system of dogs using culture-independent methods.
Materials and methods:  Samples of stomach, duodenum, ileum, cecum, colon, pancreas, liver, and bile from six dogs were evaluated for Helicobacter spp. by genus, gastric, and enterohepatic Helicobacter spp. Polymerase chain reaction, 16S rRNA gene sequence analysis, immunohistochemistry, and fluorescence in situ hybridization (FISH).
Results:  In the stomach, Helicobacter spp. DNA was detected in all six dogs, with H. bizzozeronii and H. felis identified by specific polymerase chain reaction. Helicobacter organisms were localized within the surface mucus, the lumen of gastric glands, and inside parietal cells. The small intestine harbored gastric and enterohepatic Helicobacter spp. DNA/antigen in low amounts. In the cecum and colon, Helicobacter spp. DNA, with highest similarity to H. bilis /flexispira taxon 8, H. cinaedi , and H. canis, was detected in all six dogs. Helicobacter organisms were localized at the mucosal surface and within the crypts. Gastric Helicobacter spp. DNA was detected occasionally in the large intestine, but no gastric Helicobacter spp. were present in clone libraries or detected by FISH.
Conclusions:  This study demonstrates that in addition to the stomach, the large intestine of dogs is also abundantly colonized by Helicobacter spp. Additional studies are necessary to investigate the association between enterohepatic Helicobacter spp. and presence of intestinal inflammatory or proliferative disorders in dogs.  相似文献   

8.
Background:  The Mongolian gerbil model is often used to investigate the interactions between different gastric Helicobacter species and the gastric tissue. A preliminary screening of a gerbil population intended for use in Helicobacter suis infection studies revealed a natural yeast infection in the stomach of these animals. After identification, we have investigated the effect of the gastric yeast infection on the outcome of an experimental H. suis infection in Mongolian gerbils.
Materials and methods:  Yeast cells were isolated from the stomachs of Mongolian gerbils. Identification was done by Internally Transcribed rRNA Spacer 2 Region PCR fragment length analysis. To investigate a possible pathologic role of this yeast, Mongolian gerbils were infected experimentally with this yeast. Co-infection with the newly isolated H. suis was performed to investigate possible interactions between both micro-organisms.
Results:  Kazachstania heterogenica was found colonizing the stomach of Mongolian gerbils, mainly in the antrum. Few pathologic changes were seen in the stomachs of infected animals. Experimental co-infection of gerbils with this yeast and the newly isolated H. suis showed a significant increase in inflammation in animals infected with both micro-organisms compared to animals infected only with H. suis .
Conclusions:  K. heterogenica colonizes the stomach of Mongolian gerbils in exactly the same regions as gastric Helicobacter species. The uncontrolled presence of this yeast in the gerbil stomach can lead to an overestimation of the inflammation caused by Helicobacter in this animal model.  相似文献   

9.

Background

Helicobacter (H.) heilmannii” type 1 is the most prevalent gastric non-H. pylori Helicobacter species in humans suffering from gastric disease. It has been shown to be identical to H. suis, a bacterium which is mainly associated with pigs. To obtain better insights into the long-term pathogenesis of infections with this micro-organism, experimental infections were carried out in different rodent models.

Methodology/Principal Findings

Mongolian gerbils and mice of two strains (BALB/c and C57BL/6) were infected with H. suis and sacrificed at 3 weeks, 9 weeks and 8 months after infection. Gastric tissue samples were collected for PCR analysis, histological and ultrastructural examination. In gerbils, bacteria mainly colonized the antrum and a narrow zone in the fundus near the forestomach/stomach transition zone. In both mice strains, bacteria colonized the entire glandular stomach. Colonization with H. suis was associated with necrosis of parietal cells in all three animal strains. From 9 weeks after infection onwards, an increased proliferation rate of mucosal epithelial cells was detected in the stomach regions colonized with H. suis. Most gerbils showed a marked lymphocytic infiltration in the antrum and in the forestomach/stomach transition zone, becoming more pronounced in the course of time. At 8 months post infection, severe destruction of the normal antral architecture at the inflamed sites and development of mucosa-associated lymphoid tissue (MALT) lymphoma-like lesions were observed in some gerbils. In mice, the inflammatory response was less pronounced than in gerbils, consisting mainly of mononuclear cell infiltration and being most severe in the fundus.

Conclusions/Significance

H. suis causes death of parietal cells, epithelial cell hyperproliferation and severe inflammation in mice and Mongolian gerbil models of human gastric disease. Moreover, MALT lymphoma-like lesions were induced in H. suis-infected Mongolian gerbils. Therefore, the possible involvement of this micro-organism in human gastric disease should not be neglected.  相似文献   

10.
Background:  Helicobacter pylori is the primary cause of gastritis and peptic ulceration in humans. In a minority of patients with upper gastrointestinal symptoms, long tightly coiled spiral bacteria, provisionally named " Helicobacter heilmannii, " are observed in gastric biopsies. These bacteria are extremely fastidious and only one previous study has succeeded in obtaining an isolate in vitro.
Materials and Methods:  We used two different selective media to isolate " H. heilmannii " from the gastric mucosa of a Finnish patient presenting with severe dyspeptic symptoms. The isolates were characterized by testing for urease and catalase activity, by using light and electron microscopy, and by sequencing of the partial 16S rRNA and ureAB genes. Single-enzyme amplified fragment length polymorphism (sAFLP) was used to analyze the genetic diversity among the isolates.
Results:  We obtained 15 isolates from different gastric biopsies prior and three after unsuccessful treatment of the patient. The isolates were identified as Helicobacter bizzozeronii . Eradication therapy was unsuccessful most probably due to high level of resistance to metronidazole. Persistent colonization by the same H. bizzozeronii clone was confirmed by sAFLP, however, small differences between the profiles suggested long-term colonization of the patient.
Conclusions:  Helicobacter bizzozeronii remains the only " H. heilmannii " species isolated from human gastric mucosa although it has been an infrequent observation among " H. heilmannii "-infected patients in PCR-based screening studies. The relevance of H. bizzozeronii and other potentially zoonotic gastric Helicobacter spp. in human disease remains to be determined.  相似文献   

11.
The bacteria Helicobacter pylori is a major human pathogen that infects over half of the world's population. Infection initiates a series of changes in the gastric mucosa, beginning with atrophic gastritis and leading in some patients to peptic ulcer disease, mucosa-associated lymphomas, and gastric adenocarcinoma. Although this cascade of events clearly occurs, little is known about the role of the host immune response in disease progression. We have utilized the C57BL/6 Helicobacter felis mouse model to critically analyze the role of the adaptive immune response in the development of Helicobacter-associated gastric pathology. Infection of B and T cell-deficient RAG-1-/- mice or T cell-deficient TCRbetadelta-/- mice with H. felis resulted in high levels of colonization, but no detectable gastric pathology. Conversely, infection of B cell-deficient microMT mice resulted in severe gastric alterations identical with those seen in immunocompetent C57BL/6-infected mice, including gastric mucosal hyperplasia and intestinal metaplasia. These results demonstrate that the host T cell response is a critical mediator of Helicobacter-associated gastric pathology, and that B cells and their secreted Abs are not the effectors of the immune-mediated gastric pathology seen after H. felis infection. These results indicate that in addition to specific Helicobacter virulence factors, the host immune response is an important determinant of Helicobacter-associated disease.  相似文献   

12.
BACKGROUND: We clinically obtained urease-negative mutant strains of Helicobacter pylori. The goal of this study was to investigate the ability of the urease-negative strain to colonize and subsequently damage the gastric mucosa in Mongolian gerbils. In addition, the genes encoding the urease production in the test strain were analyzed, and other genes encoding the virulence factors, cytotoxin-associated protein and vacuolating-cytotoxin were evaluated. MATERIALS AND METHODS: The character of urease-negative isolates of H. pylori was defined. The identification of H. pylori was confirmed by polymerase chain reaction (PCR). The H. pylori isolate was transfected into Mongolian gerbils as previously described, which were followed up to 42 weeks, and the changes in their gastric mucosa were examined histologically. RESULTS AND CONCLUSION: Fifteen Mongolian gerbils orally infected with 10(7) colony forming units of urease-negative H. pylori were killed at 4, 12, 24, 36 and 42 weeks (n = 3) after infection. Culture medium without urease-negative H. pylori was given to the Mongolian gerbils as control. H. pylori continued to exist in the subject's stomach and gastric ulceration was observed and compared with the control. Clinically obtained urease-negative H. pylori continued to exist for at least 42 weeks in the subject's stomach and it induced gastric ulcers. These data demonstrated that the urease in H. pylori was not a necessary factor in the formation of gastric ulcers in the Mongolian gerbil model.  相似文献   

13.
Terminal sialic acid in the lipopolysaccharides (LPSs) of mucosal pathogens is an important virulence factor. Here we report the characterization of a Helicobacter sialyltransferase involved in the biosynthesis of sialylated LPS in Helicobacter bizzozeronii, the only non-pylori gastric Helicobacter species isolated from humans thus far. Starting from the genome sequences of canine and human strains, we identified potential sialyltransferases downstream of three genes involved in the biosynthesis of N-acetylneuraminic acid. One of these candidates showed monofunctional α,2,3-sialyltransferase activity with a preference for N-acetyllactosamine as a substrate. The LPSs from different strains were shown by SDS-PAGE and high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) to contain sialic acid after neuraminidase treatment. The expression of this sialyltransferase and sialyl-LPS appeared to be a phase-variable characteristic common to both human and canine H. bizzozeronii strains. The sialylation site of the LPSs of two H. bizzozeronii strains was determined to be NeuAc-Hex-HexNAc, suggesting terminal 3'-sialyl-LacNAc. Moreover, serological typing revealed the possible presence of sialyl-Lewis X in two additional strains, indicating that H. bizzozeronii could also mimic the surface glycans of mammalian cells. The expression of sialyl-glycans may influence the adaptation process of H. bizzozeronii during the host jump from dogs to humans.  相似文献   

14.
BACKGROUND: The lipopolysaccharide of Helicobacter pylori plays an important role in colonization and pathogenicity. The present study sought to compare structural and biological features of lipopolysaccharides from gastric and enterohepatic Helicobacter spp. not previously characterized. MATERIALS AND METHODS: Purified lipopolysaccharides from four gastric Helicobacter spp. (H. pylori, Helicobacter felis, Helicobacter bizzozeronii and Helicobacter mustelae) and four enterohepatic Helicobacter spp. (Helicobacter hepaticus, Helicobacter bilis, 'Helicobacter sp. flexispira' and Helicobacter pullorum) were structurally characterized using electrophoretic, serological and chemical methods. RESULTS: Structural insights into all three moieties of the lipopolysaccharides, i.e. lipid A, core and O-polysaccharide chains, were gained. All species expressed lipopolysaccharides bearing an O-polysaccharide chain, but H. mustelae and H. hepaticus produced truncated semirough lipopolysaccharides. However, in contrast to lipopolysaccharides of H. pylori and H. mustelae, no blood group mimicry was detected in the other Helicobacter spp. examined. Intra-species, but not interspecies, fatty acid profiles of lipopolysaccharides were identical within the genus. Although shared lipopolysaccharide-core epitopes with H. pylori occurred, differing structural characteristics were noted in this lipopolysaccharide region of some Helicobacter spp. The lipopolysaccharides of the gastric helicobacters, H. bizzozeronii and H. mustelae, had relative Limulus amoebocyte lysate activities which clustered around that of H. pylori lipopolysaccharide, whereas H. bilis, 'Helicobacter sp. flexispira' and H. hepaticus formed a cluster with approximately 1000-10,000-fold lower activities. H. pullorum lipopolysaccharide had the highest relative Limulus amoebocyte lysate activity of all the helicobacter lipopolysaccharides (10-fold higher than that of H. pylori lipopolysaccharide), and all the lipopolysaccharides of enterohepatic Helicobacter spp. were capable of inducing nuclear factor-Kappa B(NF-kappaB) activation. CONCLUSIONS: The collective results demonstrate the structural heterogeneity and pathogenic potential of lipopolysaccharides of the Helicobacter genus as a group and these differences in lipopolysaccharides may be indicative of adaptation of the bacteria to different ecological niches.  相似文献   

15.
BACKGROUND: Surfactant protein D (SP-D), a component of innate immunity, is expressed in the gastric mucosa and is up-regulated in the presence of Helicobacter infection. SP-D binds to Helicobacter in vitro, suggesting the involvement of SP-D in Helicobacter-induced immune responses. The aim of this study was to determine the role of SP-D in gastric epithelial defense in vivo. METHODS: Specific pathogen-free SP-D-deficient mice (SP-D(-/-)) and C57BL/6 wild-type controls were challenged by gavage with different doses of Helicobacter felis, a mouse-adapted Helicobacter strain. Mice were assessed for colonization rates and density of infection. Inflammatory responses were measured by neutrophil counting and T-cell responses by proliferation assays on spleen cells stimulated with H. felis sonicate. The in vitro effect of SP-D on Helicobacter uptake by monocyte-derived dendritic cells was assessed by confocal microscopy and FACS analyses. RESULTS: SP-D(-/-) mice were more susceptible to low-dose infectious challenge than C57BL/6 controls (p = .02). The density of colonization was higher in the SP-D(-/-) infected mice. Neutrophil infiltrates were lower in the SP-D(-/-) mice, particularly in the acid-secreting regions of the stomach. T-cell proliferative responses to Helicobacter antigen were reduced in SP-D(-/-) mice (p = .001) after 12 weeks infection. In vitro uptake of Helicobacter by dendritic cells was significantly enhanced in the presence of SP-D (p = .001). CONCLUSION: In the absence of SP-D, Helicobacter uptake by dendritic cells is impaired. This provides an explanation for the diminished inflammation and immune responses in the SP-D(-/-) mice.  相似文献   

16.
It has previously been shown that matrix metalloproteinase-9 (MMP-9) levels, originating from macrophages, are considerably increased in human Helicobacter pylori-associated gastritis. Here, the early kinetics of the MMP-9 response resulting from Helicobacter infection in C57BL/6 and MMP-9 knock-out mice using the murine Helicobacter felis model were examined. H. felis infection induced severe gastritis in the murine stomach at just 2 weeks after infection. Before gastritis, an increase was observed in MMP-9-positive cells detected by immunohistochemistry in the basal lamina propria. This finding was corroborated by gelatin zymography of stomach samples. As the gastritis increased so did the concentration of MMP-9 and the incidence of gastric MMP-9-positive cells, their location corresponding to that of macrophages. In contrast, systemic levels of MMP-9 remained unchanged. When MMP-9-deficient mice were infected with H. felis, no significant difference in gastritis development was detected compared with disease development in wild-type animals. We conclude that MMP-9 production is an early event in the response to gastric Helicobacter infection, a feature that may favor the recruitment of immune cells early during infection. At later stages, however, the increased levels of MMP-9 may damage the integrity of the stomach mucosa.  相似文献   

17.
Gastric infection with Helicobacter induces a lymphocyte-rich mucosal inflammation that contains a minor population of neutrophilic granulocytes. The function of neutrophils in the local immune response to gastric Helicobacter infection remains unknown. To investigate this issue, we conducted experiments in neutrophil-depleted control wild-type (wt) and IL-10(-/-) mice infected with Helicobacter felis by gastric lavage. Infection of wt mice elicited a mild, focal gastritis and a Helicobacter-specific Th1 immune response. In wt mice Helicobacter colonization of the stomach was persistent and progressively increased during the 29 days of observation. Infection of IL-10(-/-) mice with H. felis elicited a severe chronic gastritis and a greatly enhanced Helicobacter-specific Th1 immune response, as compared with wt mice. After initial colonization, the IL-0(-/-) mice completely cleared Helicobacter from the stomach by day 8. The gastric inflammation in wt and IL-10(-/-) mice contained modest numbers of neutrophils. The intensity of gastric inflammation and the extent of Helicobacter colonization were similar in control and in neutrophil-depleted wt mice. In contrast, neutrophil depletion of Helicobacter-infected IL-10(-/-) mice decreased the severity of gastritis, modulated the Helicobacter-specific Th1 immune response, and delayed the clearance of bacteria from the stomach. These studies identify a role for neutrophils in the local and systemic immune response to gastric Helicobacter in IL-10(-/-) mice.  相似文献   

18.
Specimens of gastric mucosa and liver of 25 free-ranging Eurasian lynx (Lynx lynx), and four red foxes (Vulpes vulpes) shot in Sweden during 1999-2000, were investigated for the presence of Helicobacter species. Histopathology, bacteriologic culture and urease test, Helicobacter genus-specific 16S rDNA PCR analysis, and DNA sequence analysis were applied. Numerous Helicobacter-like organisms were observed histologically in the gastric mucosa of one fox. Helicobacter spp. were detected in the stomach by PCR analysis in 17 (68%) of the lynx and in three (75%) of the foxes. Seven of the positive lynx were also positive in the urease test. PCR fragments, amplified from lynx and foxes, were sequenced and compared with those of known Helicobacter species. PCR products from lynx were closely related (>or=98% homology) to H. heilmannii, and PCR fragments from foxes demonstrated close homology to H. heilmannii and H. salomonis. No Helicobacter spp. or Helicobacter-like organisms could be cultured. The PCR analysis of the liver was negative for all animals. The pathologic significance of the presence of Helicobacter spp. in the stomach of free-ranging lynx and foxes remains uncertain.  相似文献   

19.
Helicobacter pylori colonized gastric mucosa is manifest in a significant neutrophil infiltration with an extensive level of oxyradical formation. Mongolian gerbil is one of the excellent models for H. pylori-infection. The present study was designed to investigate pro- and antioxidant formation in the stomach of H. pylori-positive gerbils. Fourteen male Mongolian gerbils (MGS/Sea) were orally inoculated with H. pylori (ATCC43504) (Hp group) and 15 gerbils were inoculated with the culture media (Control). H. pylori infection was confirmed by the serum anti-H. pylori IgG test. Each gerbil was evaluated 6 or 12 weeks after the inoculation. Neutrophil infiltration was assessed by the tissue MPO activity. Mucosal oxidative stress was evaluated by thiobarbituric acid-reactive substances (TBARS), total glutathione contents, glutathione peroxidase (GSHPx) activity and Cu-, Zn-superoxide dismutase (SOD) activity. In Hp group, the H. pylori was persistently infected until 12 weeks. The level of MPO activity was significantly higher in Hp group at 6 and 12 weeks. Although the levels of TBARS and total glutathione were within the same range as controls at 6 weeks, they were significantly increased at 12 weeks. However, GSHPx activity was significantly increased at 6 weeks, but became the same range with the controls at 12 weeks. SOD activity showed no significant increase in Hp group at 6 and 12 weeks. In conclusion, H. pylori inoculation induced gastric mucosal neutrophil activation and pro-oxidant formation and also increased total glutathione contents, one of the mucosal antioxidants in gerbils.  相似文献   

20.
Helicobacter pylori is a human pathogen, whereas the natural hosts for 'Gastrospirillum hominis' and Helicobacter felis are animals. 'G. hominis' is occasionally found to cause infection in humans, whereas H. felis only rarely infects humans. The pathogenesis of H. pylori infection is not completely understood and in order to reveal differences in immune response to the three Helicobacter species, the upregulation of adherence molecule CD11b/CD18, chemotactic activity and oxidative burst response of neutrophils after stimulation with H. pylori, 'G. hominis' and H. felis sonicates, were compared. Like H. pylori, 'G. hominis' and H. felis induced upregulation of CD11b/CD18 and chemotaxis of neutrophils. 'G. hominis' demonstrated a more pronounced upregulation of CD11b/CD18, whereas H. felis was the strongest stimulant of neutrophil chemotaxis. H. felis was unable to stimulate neutrophils to oxidative burst response, whereas 'G. hominis' activated neutrophils in a dose-dependent way similar to H. pylori. 'G. hominis' and H. felis were both able to prime neutrophils for oxidative burst response similar to H. pylori. In conclusion, we observed clear differences in neutrophil responses to different Helicobacter species, which indicates that bacterial virulence factors may be important for the diversity in the pathogenetic outcome of Helicobacter infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号