首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
One consequence of the diversity in gap junction structural proteins is that cells expressing different connexins may come into contact and form intercellular channels that are mixed in connexin content. We have systematically examined the ability of adjacent cells expressing different connexins to communicate, and found that all connexins exhibit specificity in their interactions. Two extreme examples of selectivity were observed. Connexin40 (Cx40) was highly restricted in its ability to make heterotypic channels, functionally interacting with Cx37, but failing to do so when paired with Cx26, Cx32, Cx43, Cx46, and Cx50. In contrast, Cx46 interacted well with all connexins tested except Cx40. To explore the molecular basis of connexin compatibility and voltage gating, we utilized a chimera consisting of Cx32 from the N-terminus to the second transmembrane domain, fused to Cx43 from the middle cytoplasmic loop to the C-terminus. The chimeric connexin behaved like Cx43 with regard to selectivity and like Cx32 with regard to voltage dependence. Taken together, these results demonstrate that the second but not the first extracellular domain affects compatibility, whereas voltage gating is strongly influenced by sequences between the N-terminus and the second transmembrane domain.  相似文献   

4.
Unannotated mammalian genome databases (dog, cow, opossum) were searched for candidate connexin genes, using sequences from annotated genomes (man, mouse). All 18 'multi-species' connexin genes, i.e., orthologs of connexin26 , 29/31.3 (duplicated in opossum), 30, 30.2/31.9, 30.3, 31, 31.1, 32, 36, 37, 39/40.1, 40, 43, 45, 44/46, 47, 50, and 57/62 , were found in dog, cow and opossum. Connexin25 and 58 have been considered specific for man, but evident orthologs of connexin25 were found in dog, cow and opossum, and orthologs of connexin58 were found in dog and cow. Moreover, a connexin43 -like sequence (approx. 80% identical to connexin43 ) was found in man, chimpanzee, dog and cow. In the three former species, the sequences were located on the X chromosome. In man, chimpanzee and cow, there were stop codons in all reading frames; these sequences are therefore judged as pseudogenes, called here Cx43pX . In the dog, the sequence contained an open reading frame for a protein of 35.7 kDa (connexin35.7). We suggest that these sequences are orthologs of connexin33 , previously considered as a rodent-specific connexin gene. Thus, connexin25 , 33 and 58 are not species-specific genes. However, the opossum may possess a candidate, connexin39.2 , without obvious orthologs in other mammals. Furthermore, pseudogenes of primate connexin31.3 and opossum connexin35 (one of the two orthologs of primate connexin31.3) were detected. These results suggest that the structure of the mammalian connexin gene family should be revised, especially with regard to the so-called 'species-specific' connexins .  相似文献   

5.
6.
In order to characterize connexin expression and regulation in the epidermis, we have characterized a rat epidermal keratinocyte (REK) cell line that is phenotypically similar to basal keratinocytes in that they have the ability to differentiate into organotypic epidermis consisting of a basal cell layer, 2-3 suprabasal cell layers, and a cornified layer. RT-PCR revealed that REK cells express mRNA for Cx26, Cx31, Cx31.1, Cx37, and Cx43, which mimics the reported connexin profile for rat tissue. In addition, we report the expression of Cx30, Cx30.3, Cx40, and Cx45 in rat keratinocytes, highlighting the complexity of the connexin complement in rat epidermis. Furthermore, 3-dimensional analysis of organotypic skin revealed that Cx26 and Cx43 are exquisitely regulated during the differentiation process. The life-cycle of these connexins including their expression, transport, assembly into gap junctions, internalization, and degradation are elegantly depicted in organotypic epidermis as keratinocytes proceed from differentiation to programmed cell death.  相似文献   

7.
In order to characterize connexin expression and regulation in the epidermis, we have characterized a rat epidermal keratinocyte (REK) cell line that is phenotypically similar to basal keratinocytes in that they have the ability to differentiate into organotypic epidermis consisting of a basal cell layer, 2-3 suprabasal cell layers, and a cornified layer. RT-PCR revealed that REK cells express mRNA for Cx26, Cx31, Cx31.1, Cx37, and Cx43, which mimics the reported connexin profile for rat tissue. In addition, we report the expression of Cx30, Cx30.3, Cx40, and Cx45 in rat keratinocytes, highlighting the complexity of the connexin complement in rat epidermis. Furthermore, 3-dimensional analysis of organotypic skin revealed that Cx26 and Cx43 are exquisitely regulated during the differentiation process. The life-cycle of these connexins including their expression, transport, assembly into gap junctions, internalization, and degradation are elegantly depicted in organotypic epidermis as keratinocytes proceed from differentiation to programmed cell death.  相似文献   

8.
The open reading frames of 17 connexins from Syrian hamster (using tissues) and 16 connexins from the Chinese hamster cell line V79, were fully (Cx30, Cx31, Cx37, Cx43 and Cx45) or partially sequenced. We have also detected, and partially sequenced, seven rat connexins that previously were unavailable. The expression of connexin genes was examined in some hamster organs and cultured hamster cells, and compared with wild-type mouse and the cancer-prone Min mouse. Although the expression patterns were similar for most organs and connexins in hamster and mouse, there were also some prominent differences (Cx29 and 30.3 in testis; Cx31.1 and 32 in eye; Cx46 in brain, kidney and testis; Cx47 in kidney). This suggests that some connexins have species-specific expression profiles. In contrast, there were minimal differences in expression profiles between wild type and Min mice. Species-specific expression profiles should be considered in attempts to make animal models of human connexin-associated diseases.  相似文献   

9.
The open reading frames of 17 connexins from Syrian hamster (using tissues) and 16 connexins from the Chinese hamster cell line V79, were fully (Cx30, Cx31, Cx37, Cx43 and Cx45) or partially sequenced. We have also detected, and partially sequenced, seven rat connexins that previously were unavailable. The expression of connexin genes was examined in some hamster organs and cultured hamster cells, and compared with wild-type mouse and the cancer-prone Min mouse. Although the expression patterns were similar for most organs and connexins in hamster and mouse, there were also some prominent differences (Cx29 and 30.3 in testis; Cx31.1 and 32 in eye; Cx46 in brain, kidney and testis; Cx47 in kidney). This suggests that some connexins have species-specific expression profiles. In contrast, there were minimal differences in expression profiles between wild type and Min mice. Species-specific expression profiles should be considered in attempts to make animal models of human connexin-associated diseases.  相似文献   

10.
Connexins are protein subunits that constitute gap junction channels. Two members of this gene family, connexin43 (Cx43) and connexin32 (Cx32), are abundantly expressed in the heart and liver, respectively. Human genomic DNA analysis revealed the presence of two loci for Cx43: an expressed gene and a processed pseudogene. The expressed gene (GJA1) was mapped to human chromosome 6 and the pseudogene (GJA1P) to chromosome 5. To determine whether Cx32 was linked to Cx43, somatic cell hybrids were analyzed by polymerase chain reaction and hybridization, resulting in the assignment of the gene for Cx32 (GJB1) to the X chromosome at Xp11----q22. Comparison of the structures of connexin genes suggests that members of this multigene family arose from a single precursor, but evolved to distinct chromosomal locations.  相似文献   

11.
To evaluate the influence of intracellular domains of connexin (Cx) on channel transfer properties, we analyzed mouse connexin (Cx) Cx26 and Cx30, which show the most similar amino acid sequence identities within the family of gap junction proteins. These connexin genes are tightly linked on mouse chromosome 14. Functional studies were performed on transfected HeLa cells stably expressing both mouse connexins. When we examined homotypic intercellular transfer of microinjected neurobiotin and Lucifer yellow, we found that gap junctions in Cx30-transfected cells, in contrast to Cx26 cells, were impermeable to Lucifer yellow. Furthermore, we observed heterotypic transfer of neurobiotin between Cx30-transfectants and HeLa cells expressing mouse Cx30.3, Cx40, Cx43 or Cx45, but not between Cx26 transfectants and HeLa cells of the latter group. The main differences in amino acid sequence between Cx26 and Cx30 are located in the presumptive cytoplasmic loop and C-terminal region of these integral membrane proteins. By exchanging one or both of these domains, using PCR-based mutagenesis, we constructed Cx26/30 chimeric cDNAs, which were also expressed in HeLa cells after transfection. Homotypic intercellular transfer of injected Lucifer yellow was observed exclusively with those chimeric constructs that coded for both cytoplasmic domains of Cx26 in the Cx30 backbone polypeptide chain. In contrast, cells transfected with a construct that coded for the Cx26 backbone with the Cx30 cytoplasmic loop and C-terminal region did not show transfer of Lucifer yellow. Thus, Lucifer yellow transfer can be conferred onto chimeric Cx30 channels by exchanging the cytoplasmic loop and the C-terminal region of these connexins. In turn, the cytoplasmic loop and C-terminal domain of Cx30 prevent Lucifer yellow transfer when swapped with the corresponding domains of Cx26. In chimeric Cx30/Cx26 channels where the cytoplasmic loop and C-terminal domains had been exchanged, the unitary channel conductance was intermediate between those of the parental channels. Moreover, the voltage sensitivity was slightly reduced. This suggests that these cytoplasmic domains interfere directly or indirectly with the diffusivity, the conductance and voltage gating of the channels. Received: 26 July 2000/Revised: 15 February 2001  相似文献   

12.
Connexin disorders of the ear, skin, and lens   总被引:15,自引:0,他引:15  
Gap junctions provide coupled cells with a direct pathway for sharing ions, nutrients, and small metabolites, thus helping to maintain homeostasis in various tissues. Abnormal function and/or expression of specific connexin genes has been linked to several diseases, including genetic deafness, skin disease, peripheral neuropathies, and cataracts. Research has provided significant insight into the function of gap junction proteins in both in vitro and in vivo models; however, questions regarding the exact mechanisms by which connexin related diseases occur in mammalian systems remain. Here, we discuss the disease states that are related to three human connexin genes, Cx26 (GJB2), Cx46 (GJA3) and Cx50 (GJA8), and recent scientific evidence characterizing those diseases in various experimental models.  相似文献   

13.
14.
Gap junctions have traditionally been characterized as nonspecific pores between cells passing molecules up to 1 kDa in molecular mass. Nonetheless, it has become increasingly evident that different members of the connexin (Cx) family mediate quite distinct physiological processes and are often not interchangeable. Consistent with this observation, differences in permeability to natural metabolites have been reported for different connexins, although the physical basis for selectivity has not been established. Comparative studies of different members of the connexin family have provided evidence for ionic charge selectivity, but surprisingly little is known about how connexin composition affects the size of the pore. We have employed a series of Alexa dyes, which share similar structural characteristics but range in size from molecular weight 350 to 760, to probe the permeabilities and size limits of different connexin channels expressed in Xenopus oocytes. Correlated dye transfer and electrical measurements on each cell pair, in conjunction with a three-dimensional mathematical model of dye diffusion in the oocyte system, allowed us to obtain single channel permeabilities for all three dyes in six homotypic and four heterotypic channels. Cx43 and Cx32 channels passed all three dyes with similar efficiency, whereas Cx26, Cx40, and Cx45 channels showed a significant drop-off in permeability with the largest dye. Cx37 channels only showed significant permeability for the smaller two dyes, but at two- to sixfold lower levels than other connexins tested. In the heterotypic cases studied (Cx26/Cx32 and Cx43/Cx37), permeability characteristics were found to resemble the more restrictive parental homotypic channel. The most surprising finding of the study was that the absolute permeabilities calculated for all gap junctional channels in this study are, with one exception, at least 2 orders of magnitude greater than predicted purely on the basis of hindered pore diffusion. Consequently, affinity between the probes and the pore creating an energetically favorable in-pore environment, which would elevate permeant concentration within the pore and hence the flux, is strongly implicated.  相似文献   

15.
Connexin genes code for proteins that form cell-to-cell channels known as gap junctions. The genes for the known connexins 26, 32, 43, and 46 have been assigned to human chromosomes, 13, X, 6, and 13, respectively, by analysis of a panel of human-mouse somatic cell hybrids using rat cDNA probes. A pseudogene of connexin 43 that lacks an intron of the cx43 gene has been located on human chromosome 5. Furthermore, the genes of the two new connexins 37 and 40 have both been assigned to human chromosome 1. Thus the human chromosomes 1 and 13 each carry at least two different connexin genes. Their exact location on these chromosomes is not yet known. From our results subchromosomal assignments can be deduced for the human cx32 gene to Xq13-p11, the human cx37 gene as well as the human cx40 gene to 1pter-q12, and the human cx43 gene to 6q14-qter. The generation of the connexin multigene family from a hypothetical ancestral connexin gene is discussed.  相似文献   

16.
The lens is an avascular organ composed of an anterior epithelial cell layer and fiber cells that form the bulk of the organ. The lens expresses connexin43 (Cx43), connexin46 (Cx46) and connexin50 (Cx50). Epithelial Cx50 has critical roles in cell proliferation and differentiation, likely involving growth factor-dependent signaling pathways. Both Cx46 and Cx50 are crucial for lens transparency; mutations in their genes have been linked to congenital and age-related cataracts. Congenital cataract-associated connexin mutants can affect protein trafficking, stability and/or function, and the functional effects may differ between gap junction channels and hemichannels. Dominantly inherited cataracts may result from effects of the connexin mutant on its wild type isotype, the other co-expressed wild type connexin and/or its interaction with other cellular components.  相似文献   

17.
In the last decade or so, increasing evidences suggest that the mutations of two connexin genes, GJA3 and GJA8, are directly linked to human congenital cataracts in North and Central America, Europe and Asia. GIA3 and GIA8 genes encode gap junction-forming proteins, connexin (Cx) 46 and Cx50, respectively. These two connexins are predominantly expressed in lens fiber cells. Majority of identified mutations are missense, and the mutated sites are scattered across various domains of connexin molecules. Genetic deletion of either of these two genes leads to the development of cataracts; however, the types of cataracts developed are distinctive. More interestingly, microphthalmia is only developed in Cx50, but not Cx46 deficient mice, suggesting the unique role of Cx50 in lens cell growth and development. Knockin studies with the replacement of Cx46 or Cx50 at their respective gene locus further demonstrate the unique properties of these two connexins. Furthermore, the function of Cx50 in epithelial-fiber differentiation appears to be independent of its conventional role in forming gap junction junction channels. Due to their specific functions in maintaining lens clarity and development, and their malfunctions resulting in lens cataractogenesis and developmental impairment, connexin molecules could be developed as potential drug targets for therapeutic intervention for treatment of cataracts and other eye disorders. Recent advances in basic research of lens connexins and the discoveries of clinical disorders as a result of lens connexin dysfunctions are summarized and discussed here.  相似文献   

18.
Mutations in human connexin (Cx) genes have been related to diseases, which we termed connexinopathies. Such hereditary disorders include nonsyndromic or syndromic deafness (Cx26, Cx30), Charcot Marie Tooth disease (Cx32), occulodentodigital dysplasia and cardiopathies (Cx43), and cataracts (Cx46, Cx50). Despite the clinical phenotypes of connexinopathies have been well documented, their pathogenic molecular determinants remain elusive. The purpose of this work is to identify common/uncommon patterns in channels function among Cx mutations linked to human diseases. To this end, we compiled and discussed the effect of mutations associated to Cx26, Cx32, Cx43, and Cx50 over gap junction channels and hemichannels, highlighting the function of the structural channel domains in which mutations are located and their possible role affecting oligomerization, gating and perm/selectivity processes.  相似文献   

19.
Gene ablation studies in mice have revealed roles for gap junction proteins (connexins) in heart development. Of the 20 connexins in vertebrates, four are expressed in developing heart: connexin37 (Cx37), connexin40 (Cx40), connexin43 (Cx43), and connexin45 (Cx45). Although each cardiac connexin has a different pattern of expression, some heart cells coexpress multiple connexins during cardiac morphogenesis. Since different connexins could have overlapping functions, some developmental phenotypes may only become evident when more than one connexin is ablated. In this study, we interbred Cx40(-/-) and Cx43(-/-) mice to generate mice lacking both Cx40 and Cx43. Cx40(-/-)Cx43(-/-) mice die around embryonic day 12.5 (E12.5), much earlier than either Cx40(-/-) or Cx43(-/-) mice, and they exhibit malformed hearts with ventricles that are abnormally rotated, suggesting a looping defect. Some Cx40(-/-)Cx43(-/-) animals also develop head defects characteristic of exencephaly. In addition, we examined mice lacking both Cx40 and Cx37 and found a high incidence of atrial and ventricular septal defects at birth. These results provide further evidence for the importance of gap junctions in embryonic development. Moreover, ablating different pairs of cardiac connexins results in distinct heart defects, suggesting both common and unique functions for Cx40, Cx43, and Cx37 during cardiac morphogenesis.  相似文献   

20.
Cells within the vascular wall are coupled by gap junctions, allowing for direct intercellular transfer of low molecular weight molecules. Although gap junctions are believed to be important for vascular development and function, their precise roles are not well understood. Mice lacking either connexin37 (Cx37) or connexin40 (Cx40), the predominant gap junction proteins present in vascular endothelium, are viable and exhibit phenotypes that are largely non-blood vessel related. Since Cx37 and Cx40 are coexpressed in endothelial cells and could overlap functionally, some roles of junctional communication may only be revealed by the elimination of both connexins. In this study, we interbreed Cx37 and Cx40 knockout mice to generate Cx37-/- Cx40-/- animals and show that they display severe vascular abnormalities and die perinatally. Cx37-/- Cx40-/- animals exhibit localized hemorrhages in skin, testis, gastrointestinal tissues, and lungs, with pronounced blood vessel dilatation and congestion occurring in some areas. Vascular anomalies were particularly striking in testis and intestine. In testis, abnormal vascular channels were present, with these channels coalescing into a cavernous, endothelium-lined blood pool resembling a hemangioma. These results provide evidence of a critical role for endothelial gap junction-mediated communication in the development and/or functional maintenance of segments of the mouse vasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号