首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
An endogenous inhibitor of l-Dopa decarboxylase activity was identified and purified from human placenta. The endogenous inhibitor of l-Dopa decarboxylase (Ddc) was localized in the membrane fraction of placental tissue. Treatment of membranes with phosphatidylinositol-specific phospholipase C or proteinase K did not affect membrane-associated Ddc inhibitory activity, suggesting that a population of the inhibitor is embedded within membranes. Purification was achieved by extraction from a nondenaturing polyacrylamide gel. The purification scheme resulted in the isolation of a single 35 kDa band, bearing l-Dopa decarboxylase inhibitory activity. The purified inhibitor was identified as Annexin V. The elucidation of the biological importance of the presence of an l-Dopa decarboxylase activity inhibitor in normal human tissues could provide us with new information leading to the better understanding of the biological pathways that Ddc is involved in.  相似文献   

2.
The aim of this study is to determine the effects of intrastriatal administration of MnCl2, on the extracellular levels of dopamine (DA) and metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in basal conditions and stimulated by depolarization with KCl and pargyline administration. Also, we studied the effect of MnCl2 on extracellular levels of l-Dopa in the presence of aromatic amino acid decarboxylase (AADC) inhibitor 3-hydroxybencilhydracine-HCl (NSD 1015). This study concluded that MnCl2, reduced the basal and K+-stimulated DA-release in striatum, without notably affecting the DOPAC and HVA levels. Intraperitoneal injection of pargyline increased striatal DA levels, decreasing DOPAC and HVA levels. The infusion of MnCl2 removed the increase in DA levels, without affecting DOPAC and HVA levels. Perfusion of NSD 1015 increased the extracellular levels of l-DOPA in striatum, and MnCl2 increased the effect of NSD1015 on l-Dopa.  相似文献   

3.
l-arabinose isomerase (EC5.3.1.4. AI) mediates the isomerization of d-galactose into d-tagatose as well as the conversion of l-arabinose into l-ribulose. The AI from Lactobacillus plantarum SK-2 was purified to an apparent homogeneity giving a single band on SDS–PAGE with a molecular mass of 59.6 kDa. Optimum activity was observed at 50°C and pH 7.0. The enzyme was stable at 50°C for 2 h and held between pH 4.5 and 8.5 for 1 h. AI activity was stimulated by Mn2+, Fe3+, Fe2+, Ca2+ and inhibited by Cu2+, Ag+, Hg2+, Pb2+. d-galactose and l-arabinose as substrates were isomerized with high activity. l-arabitol was the strongest competitive inhibitor of AI. The apparent Michaelis–Menten constant (K m), for galactose, was 119 mM. The first ten N-terminal amino acids of the enzyme were determined as MLSVPDYEFW, which is identical to L. plantarum (Q88S84). Using the purified AI, 390 mg tagatose could be converted from 1,000 mg galactose in 96 h, and this production corresponds to a 39% equilibrium.  相似文献   

4.
l-Ribose is a rare and expensive sugar that can be used as a precursor for the production of l-nucleoside analogues, which are used as antiviral drugs. In this work, we describe a novel way of producing l-ribose from the readily available raw material l-arabinose. This was achieved by introducing l-ribose isomerase activity into l-ribulokinase-deficient Escherichia coli UP1110 and Lactobacillus plantarum BPT197 strains. The process for l-ribose production by resting cells was investigated. The initial l-ribose production rates at 39°C and pH 8 were 0.46 ± 0.01 g g−1 h−1 (1.84 ± 0.03 g l−1 h−1) and 0.27 ± 0.01 g g−1 h−1 (1.91 ± 0.1 g l−1 h−1) for E. coli and for L. plantarum, respectively. Conversions were around 20% at their highest in the experiments. Also partially purified protein precipitates having both l-arabinose isomerase and l-ribose isomerase activity were successfully used for converting l-arabinose to l-ribose.  相似文献   

5.
Expression of a heterologous l-lactate dehydrogenase (l-ldh) gene enables production of optically pure l-lactate by yeast Saccharomyces cerevisiae. However, the lactate yields with engineered yeasts are lower than those in the case of lactic acid bacteria because there is a strong tendency for ethanol to be competitively produced from pyruvate. To decrease the ethanol production and increase the lactate yield, inactivation of the genes that are involved in ethanol production from pyruvate is necessary. We conducted double disruption of the pyruvate decarboxylase 1 (PDC1) and alcohol dehydrogenase 1 (ADH1) genes in a S. cerevisiae strain by replacing them with the bovine l-ldh gene. The lactate yield was increased in the pdc1/adh1 double mutant compared with that in the single pdc1 mutant. The specific growth rate of the double mutant was decreased on glucose but not affected on ethanol or acetate compared with in the control strain. The aeration rate had a strong influence on the production rate and yield of lactate in this strain. The highest lactate yield of 0.75 g lactate produced per gram of glucose consumed was achieved at a lower aeration rate.  相似文献   

6.
The l-rhamnose isomerase gene (L -rhi) encoding for l-rhamnose isomerase (l-RhI) from Bacillus pallidus Y25, a facultative thermophilic bacterium, was cloned and overexpressed in Escherichia coli with a cooperation of the 6×His sequence at a C-terminal of the protein. The open reading frame of L -rhi consisted of 1,236 nucleotides encoding 412 amino acid residues with a calculated molecular mass of 47,636 Da, showing a good agreement with the native enzyme. Mass-produced l-RhI was achieved in a large quantity (470 mg/l broth) as a soluble protein. The recombinant enzyme was purified to homogeneity by a single step purification using a Ni-NTA affinity column chromatography. The purified recombinant l-RhI exhibited maximum activity at 65°C (pH 7.0) under assay conditions, while 90% of the initial enzyme activity could be retained after incubation at 60°C for 60 min. The apparent affinity (K m) and catalytic efficiency (k cat/K m) for l-rhamnose (at 65°C) were 4.89 mM and 8.36 × 105 M−1 min−1, respectively. The enzyme demonstrated relatively low levels of amino acid sequence similarity (42 and 12%), higher thermostability, and different substrate specificity to those of E. coli and Pseudomonas stutzeri, respectively. The enzyme has a good catalyzing activity at 50°C, for d-allose, l-mannose, d-ribulose, and l-talose from d-psicose, l-fructose, d-ribose and l-tagatose with a conversion yield of 35, 25, 16 and 10%, respectively, without a contamination of by-products. These findings indicated that the recombinant l-RhI from B. pallidus is appropriate for use as a new source of rare sugar producing enzyme on a mass scale production.  相似文献   

7.
Summary Dopamine administration increases renal excretion of water and Na. It remains uncertain whether these effects of dopamine are the result of a hemodynamic effect or the consequence of a direct cellular action. We investigated the effect of dopamine on water transport by the isolated toad bladderin vitro. Dopamine failed to alter baseline water flow but caused a significant inhibition of arginine vasopressin (AVP) or cyclic adenosine monophosphate (AMP) stimulated water flow. The effect of dopamine on stimulated water flow was not due to activation of adrenergic, adrenergic, or cholinergic receptors. The selective antagonists of dopamine, metoclopramide and apomorphine, prevented the effect of dopamine on AVP-stimulated water flow. These observations suggest the existence of a dopaminergic receptor in the toad bladder.l-Dopa also inhibited AVP-stimulated water flow. The effect ofl-Dopa could be prevented by metoclopramide, thus suggesting thatl-Dopa is converted to dopamine by an aromatic amino acid decarboxylase present in the toad bladder. To investigate this possibility we measured the effect of the decarboxylase inhibitor, carbidopa, on the14CO2 production generated by decarboxylation of14Cl-Dopa in isolated toad bladder epithelial cells. Isolated toad bladder epithelial cells generated significant amounts of14CO2 from14Cl-Dopa. This effect could be blocked by carbidopa, thus suggesting the existence of an aromatic amino acid decarboxylase system in the toad bladder. Carbidopa also prevented the inhibitory effect ofl-Dopa on AVP-stimulated water flow, suggesting thatl-Dopa needs to be converted to dopamine to inhibit water flow. These data suggest the existence of a dopaminergic receptor in the toad bladder. These data also suggest that dopamine can be formed locally in the toad bladder and can thus serve as a local modulator of water transport.  相似文献   

8.
The catabolism of d-galactose in yeast depends on the enzymes of the Leloir pathway. In contrast, Aspergillus nidulans mutants in galactokinase (galE) can still grow on d-galactose in the presence of ammonium—but not nitrate—ions as nitrogen source. A. nidulans galE mutants transiently accumulate high (400 mM) intracellular concentrations of galactitol, indicating that the alternative d-galactose degrading pathway may proceed via this intermediate. The enzyme degrading galactitol was identified as l-arabitol dehydrogenase, because an A. nidulans loss-of-function mutant in this enzyme (araA1) did not show NAD+-dependent galactitol dehydrogenase activity, still accumulated galactitol but was unable to catabolize it thereafter, and a double galE/araA1 mutant was unable to grow on d-galactose or galactitol. The product of galactitol oxidation was identified as l-sorbose, which is a substrate for hexokinase, as evidenced by a loss of l-sorbose phosphorylating activity in an A. nidulans hexokinase (frA1) mutant. l-Sorbose catabolism involves a hexokinase step, indicated by the inability of the frA1 mutant to grow on galactitol or l-sorbose, and by the fact that a galE/frA1 double mutant of A. nidulans was unable to grow on d-galactose. The results therefore provide evidence for an alternative pathway of d-galactose catabolism in A. nidulans that involves reduction of the d-galactose to galactitol and NAD+-dependent oxidation of galactitol by l-arabitol dehydrogenase to l-sorbose.  相似文献   

9.
We purified recombinant glucose-6-phosphate isomerase from Pyrococcus furiosus using heat treatment and Hi-Trap anion-exchange chromatography with a final specific activity of 0.39 U mg−1. The activity of the glucose-6-phosphate isomerase for l-talose isomerization was optimal at pH 7.0, 95°C, and 1.5 mM Co2+. The half-lives of the enzyme at 65°C, 75°C, 85°C, and 95°C were 170, 41, 19, and 7.9 h, respectively. Glucose-6-phosphate isomerase catalyzed the interconversion between two different aldoses and ketose for all pentoses and hexoses via two isomerization reactions. This enzyme has a unique activity order as follows: aldose substrates with hydroxyl groups oriented in the same direction at C2, C3, and C4 > C2 and C4 > C2 and C3 > C3 and C4. l-Talose and d-ribulose exhibited the most preferred substrates among the aldoses and ketoses, respectively. l-Talose was converted to l-tagatose and l-galactose by glucose-6-phosphate isomerase with 80% and 5% conversion yields after about 420 min, respectively, whereas d-ribulose was converted to d-ribose and d-arabinose with 53% and 8% conversion yields after about 240 min, respectively.  相似文献   

10.
Intracellular precursor supply is a critical factor for amino acid productivity of Corynebacterium glutamicum. To test for the effect of improved pyruvate availability on l-lysine production, we deleted the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex (PDHC) in the l-lysine-producer C. glutamicum DM1729 and characterised the resulting strain DM1729-BB1 for growth and l-lysine production. Compared to the host strain, C. glutamicum DM1729-BB1 showed no PDHC activity, was acetate auxotrophic and, after complete consumption of the available carbon sources glucose and acetate, showed a more than 50% lower substrate-specific biomass yield (0.14 vs 0.33 mol C/mol C), an about fourfold higher biomass-specific l-lysine yield (5.27 vs 1.23 mmol/g cell dry weight) and a more than 40% higher substrate-specific l-lysine yield (0.13 vs 0.09 mol C/mol C). Overexpression of the pyruvate carboxylase or diaminopimelate dehydrogenase genes in C. glutamicum DM1729-BB1 resulted in a further increase in the biomass-specific l-lysine yield by 6 and 56%, respectively. In addition to l-lysine, significant amounts of pyruvate, l-alanine and l-valine were produced by C. glutamicum DM1729-BB1 and its derivatives, suggesting a surplus of precursor availability and a further potential to improve l-lysine production by engineering the l-lysine biosynthetic pathway. This study is dedicated to Prof. Dr. Hermann Sahm on the occasion of his 65th birthday.  相似文献   

11.
The carbon catabolism of l-lysine starts in Saccharomyces cerevisiae with acetylation by an acetyl-CoA: l-lysine N6-acetyltransferase. The enzyme is strongly induced in cells grown on l-lysine as sole carbon source and has been purified about 530-fold. Its activity was specific for acetyl-CoA and, in addition to l-lysine, 5-hydroxylysine and thialysine act as acetyl acceptor. The following apparent Michaelis constants were determined: acetyl-CoA 0.8 mM, l-lysine 5.8 mM, dl-5-hydroxylysine 2.8 mM, l-thialysine 100 mM. The enzyme had a maximum activity at pH 8.5 and 37°C. Its molecular mass, estimated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, was 52 kDa. Since the native molecular mass, determined by gel filtration, was 48 kDa, the enzyme is a monomer.  相似文献   

12.
Using 3′-RACE and 5′-RACE, we have cloned and sequenced the genomic gene and complete cDNA encoding l-glutamine d-fructose 6-phosphate amidotransferase (GFAT) from the edible straw mushroom, Volvariella volvacea. Gfat contains five introns, and encodes a predicted protein of 697 amino acids that is homologous to other reported GFAT sequences. Southern hybridization indicated that a single gfat gene locus exists in the V. volvacea genome. Recombinant native V. volvacea GFAT enzyme, over-expressed using Escherichia coli and partially purified, had an estimated molecular mass of 306 kDa and consisted of four equal-sized subunits of 77 kD. Reciprocal plots revealed K m values of 0.55 and 0.75 mM for fructose 6-phosphate and l-glutamine, respectively. V. volvacea GFAT activity was inhibited by the end-product of the hexosamine pathway, UDP-GlcNAc, and by the glutamine analogues N 3-(4-methoxyfumaroyl)-l-2,3-diaminopropanoic acid and 2-amino-2-deoxy-d-glucitol-6-phosphate.  相似文献   

13.
To elucidate mechanisms that underlie the profound physiological effects of the monoamine precursors 5-hydroxy-l-tryptophan (5-HTP) and l-3,4-dihydroxyphenylalanine (l-DOPA), we examined their action on single monoaminergic neurons isolated from the ganglia of the gastropod snail Lymnaea stagnalis. In isolated serotonergic PeA motoneurons, 5-HTP produced excitation. The effect was mimicked by serotonin at 0.5–1 μM, masked by pretreatment with serotonin at higher concentrations, and abolished by the inhibitor of aromatic amino acid decarboxylase (AAAD) m-hydroxybenzylhydrazine (NSD-1015), the inhibitor of the vesicular monoamine transporter reserpine or the serotonin receptor antagonist mianserin. Exposure of the dopaminergic interneurons RPeD1 to l-DOPA caused a biphasic effect composed of a depolarization followed by a hyperpolarization. AAAD inactivation with NSD-1015, as well as the blockade of dopamine receptors with sulpiride, resulted in the enhancement of the excitatory effect, and the abolition of the inhibitory effect. Dopamine caused hyperpolarization and masked the inhibitory phase of l-DOPA action. The results show that precursors affect the rate of firing of isolated monoaminergic neurons and that their effect is completely or partially mediated by the enhanced synthesis of the respective neurotransmitter, followed by extrasynaptic release of the latter and activation of extrasynaptic autoreceptors.  相似文献   

14.
We earlier found that seleno-l-methionine (L-SeMet) as a food source of selenium (Se) is directly converted to methylselenol (CH3SeH), α-ketobutyrate, and ammonia by the mouse hepatic cystathionine γ-lyase. The purpose of this study was to clarify the biological role of cystathionine γ-lyase in Se detoxification and cytosolic glutathione peroxidase (cGPx) biosynthesis because another metabolic pathway to CH3SeH via seleno-l-cystathionine and seleno-l-cysteine (l-SeCyH) from l-SeMet has been shown by several enzymatic reactions. When mice were treated with either toxic doses of l-SeMet or a Se-deficient diet, the cystathionine γ-lyase activity for l-SeMet was invariable, suggesting that this enzyme was effective in both detoxification and biotransformation of Se. Concerning Se biotransformation into cGPx, production of H2Se as the possible precursor was not observed by the in vitro reaction of the liver cytosol with CH3SeH. When l-SeMet was administered at the nutritional dose to mice fed a Se-deficient diet, levels of both cGPx mRNA and cGPx protein were significantly restored. This recovery was not comparatively suppressed by coadministration of periodate-oxidized adenosine, an inhibitor of S-adenosylhomo-cystenase, where the conversion of l-SeMet to l-SeCyH is inhibited. However, the recovery was strongly suppressed when propargylglycine, an inhibitor of cystathioine γ-lyase that catalyzes the α,γ-elimination reaction of both l-SeMet and seleno-l-cystathionine, was treated. These results suggest that cystathionine γ-lyase is a notable enzyme, in SeMet metabolism and that CH3SeH produced by the enzymatic reaction is utilized for cGPx biosynthesis.  相似文献   

15.
The excretion of the aromatic amino acid l-tyrosine was achieved by manipulating three gene targets in the wild-type Escherichia coli K12: The feedback-inhibition-resistant (fbr) derivatives of aroG and tyrA were expressed on a low-copy-number vector, and the TyrR-mediated regulation of the aromatic amino acid biosynthesis was eliminated by deleting the tyrR gene. The generation of this l-tyrosine producer, strain T1, was based only on the deregulation of the aromatic amino acid biosynthesis pathway, but no structural genes in the genome were affected. A second tyrosine over-producing strain, E. coli T2, was generated considering the possible limitation of precursor substrates. To enhance the availability of the two precursor substrates phosphoenolpyruvate and erythrose-4-phosphate, the ppsA and the tktA genes were over-expressed in the strain T1 background, increasing l-tyrosine production by 80% in 50-ml batch cultures. Fed-batch fermentations revealed that l-tyrosine production was tightly correlated with cell growth, exhibiting the maximum productivity at the end of the exponential growth phase. The final l-tyrosine concentrations were 3.8 g/l for E. coli T1 and 9.7 g/l for E. coli T2 with a yield of l-tyrosine per glucose of 0.037 g/g (T1) and 0.102 g/g (T2), respectively.  相似文献   

16.
Based on analysis of the genome sequence of Bacillus licheniformis ATCC 14580, an isomerase-encoding gene (araA) was proposed as an l-arabinose isomerase (L-AI). The identified araA gene was cloned from B. licheniformis and overexpressed in Escherichia coli. DNA sequence analysis revealed an open reading frame of 1,422 bp, capable of encoding a polypeptide of 474 amino acid residues with a calculated isoelectric point of pH 4.8 and a molecular mass of 53,500 Da. The gene was overexpressed in E. coli, and the protein was purified as an active soluble form using Ni–NTA chromatography. The molecular mass of the purified enzyme was estimated to be ~53 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and 113 kDa by gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme required a divalent metal ion, either Mn2+or Co2+, for enzymatic activity. The enzyme had an optimal pH and temperature of 7.5 and 50°C, respectively, with a k cat of 12,455 min−1 and a k cat/K m of 34 min−1 mM−1 for l-arabinose, respectively. Although L-AIs have been characterized from several other sources, B. licheniformis L-AI is distinguished from other L-AIs by its wide pH range, high substrate specificity, and catalytic efficiency for l-arabinose, making B. licheniformis L-AI the ideal choice for industrial applications, including enzymatic synthesis of l-ribulose. This work describes one of the most catalytically efficient L-AIs characterized thus far.  相似文献   

17.
The thermophilic phototrophic prokaryote, Chloroflexus aurantiacus was shown to contain high constitutive l-threonine (l-serine) deaminating activity. Separation of cellular proteins by DE 52-cellulose chromatography and by polyacrylamide gel electrophoresis with subsequent activity staining of the gels yielded two bands, one representing an isoleucine-sensitive, the other one an isoleucine-insensitive form of l-threonine dehydratase. Both enzymes had a molecular weight of 120,000 but were distinguished by their different affinities to the two substrates, l-threonine and l-serine.Abbreviations SDH l-serine dehydratase - TDH l-threonine dehydratase  相似文献   

18.
The objective of this study was to purify and characterize a mouse hepatic enzyme that directly generates CH3SeH from seleno-l-methionine (l-SeMet) by the α,γ-elimination reaction. The l-SeMet α,γ-elimination enzyme was ubiquitous in tissues from ICR mice and the activity was relatively high in the large intestine, brain, and muscle, as well as the liver. Aging and sex of the mice did not have any significant influence on the activity in the liver. The enzyme was purified from the mouse liver by ammonium sulfate precipitation and four kinds of column chromatography. These procedures yielded a homogeneous enzyme, which was purified approx 1000-fold relative to mouse liver extract. Overall recovery was approx 8%. The purified enzyme had a molecular mass of approx 160 kDa with four identical subunits. The K m value of the enzyme for the catalysis of l-SeMet was 15.5 m M, and the V max was 0.29 units/mg protein. Pyridoxal 5′-phosphate (pyridoxal-P) was required as a cofactor because the holoenzyme could be resolved to the apoenzyme by incubation with hydroxylamine and reconstituted by addition of pyridoxal-P. The enzyme showed the optimum activity at around pH 8.0 and the highest activity at 50°C; it catalyzed the α,γ-elimination reactions of several analogs such as d,l-homocysteine and l-homoserine in addition to l-SeMet. This enzyme also catalyzed the α,β-elimination reaction of Se-methylseleno-l-cysteine. However, l-methionine was inerts. Therefore, the purified enzyme was different from the bacterial l-methionine γ-lyase that metabolizes l-SeMet to CH3SeH, in terms of the substrate specificity. These results were the first identification of a mammalian enzyme that specifically catalyzes the α,γ-elimination reaction of l-SeMet and immediately converts it to CH3SeH, an important metabolite of Se.  相似文献   

19.
The recombinant Pichia pastoris harboring an improved methionine adenosyltransferase (MAT) shuffled gene was employed to biosynthesize S-adenosyl-l-methionine (SAM). Two l-methionine (l-Met) addition strategies were used to supply the precursor: the batch addition strategy (l-Met was added separately at three time points) and the continuous feeding strategies (l-Met was fed continuously at the rate of 0.1, 0.2, and 0.5 g l−1 h−1, respectively). SAM accumulation, l-Met conversion rate, and SAM productivity with the continuous feeding strategies were all improved over the batch addition strategy, which reached 8.46 ± 0.31 g l−1, 41.7 ± 1.4%, and 0.18 ± 0.01 g l−1 h−1 with the best continuous feeding strategy (0.2 g l−1 h−1), respectively. The bottleneck for SAM production with the low l-Met feeding rate (0.1 g L−1 h−1) was the insufficient l-Met supply. The analysis of the key enzyme activities indicated that the tricarboxylic acid cycle and glycolytic pathway were reduced with the increasing l-Met feeding rate, which decreased the adenosine triphosphate (ATP) synthesis. The MAT activity also decreased as the l-Met feeding rate rose. The reduced ATP synthesis and MAT activity were probably the reason for the low SAM accumulation when the l-Met feeding rate reached 0.5 g l−1 h−1.  相似文献   

20.
A non-characterized gene, previously proposed as the d-tagatose-3-epimerase gene from Rhodobacter sphaeroides, was cloned and expressed in Escherichia coli. Its molecular mass was estimated to be 64 kDa with two identical subunits. The enzyme specificity was highest with d-fructose and decreased for other substrates in the order: d-tagatose, d-psicose, d-ribulose, d-xylulose and d-sorbose. Its activity was maximal at pH 9 and 40°C while being enhanced by Mn2+. At pH 9 and 40°C, 118 g d-psicose l−1 was produced from 700 g d-fructose l−1 after 3 h. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号