首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 168 毫秒
1.
Calcium channel blockers bind with high affinity to sites on the voltage-sensitive Ca2+ channel. Radioligand binding studies with various Ca2+ channel blockers have facilitated identification and characterization of binding sites on the channel structure. In the present study we evaluated the relationship between the binding sites for the Ca2+ channel blockers on the voltage-sensitive Ca2+ channel from rabbit heart sarcolemma and rabbit skeletal muscle transverse tubules. [3H]PN200-110 binds with high affinity to a single population of sites on the voltage-sensitive Ca2+ channel in both rabbit heart sarcolemma and skeletal muscle transverse tubules. [3H]PN200-110 binding was not affected by added Ca2+ whereas EGTA and EDTA noncompetitively inhibited binding in both types of membrane preparations. EDTA was a more potent inhibitor of [3H]PN200-110 binding than EGTA. Diltiazem stimulates the binding of [3H]PN200-110 in a temperature-sensitive manner. Verapamil inhibited binding of [3H]PN200-110 to both types of membrane preparations in a negative manner, although this effect was of a complex nature in skeletal muscle transverse tubules. The negative effect of verapamil on [3H]PN200-110 binding in cardiac muscle was completely reversed by Ca2+. On the other hand, Ca2+ was without effect on the negative cooperativity seen between verapamil and [3H]PN200-110 binding in skeletal muscle transverse tubules. Since Ca2+ did not affect [3H]PN200-110 binding to membranes, we would like to suggest that Ca2+ is modulating the negative effect of verapamil on [3H]PN200-110 binding through a distinct Ca2+ binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The cardiac receptor for calcium channel blockers was purified from bovine microsomal membranes which contained 235 +/- 33 fmol nimodipine-binding sites/mg protein (mean +/- SEM of nine preparations). To identify the receptor during the purification 20% of its binding sites were prelabeled with (+)[3H]PN200-110. The receptor was solubilized with 0.6% digitonin and was purified to a specific density of 157 pmol/mg using a combination of ion-exchange, wheat-germ-agglutinin-Sepharose chromatography and sucrose density gradient centrifugation. In the last sucrose gradient bound (+)[3H]PN200-110 comigrated with a 195-kDa protein. ( +/-)[3H]Azidopine and [3H]ludopamil, the photoaffinity ligands for the dihydropyridine and phenylalkylamine-binding site of the calcium channel, were incorporated specifically into the 195-kDa protein. These data indicate that the bovine cardiac receptor for calcium channel blockers is a 195-kDa protein. Its molecular mass suggests that the bovine cardiac receptor differs considerably from the rabbit skeletal muscle receptor protein for calcium channel blockers.  相似文献   

3.
We examined the binding of the 1,4-dihydropyridine (DHP) [3H]PN200-110 to membranes from a fibroblast cell line transfected with the alpha 1 subunit (DHP receptor) of the L-type Ca2+ channel from rabbit skeletal muscle. Binding site affinity (KD) and density (Bmax) were 1.16 +/- 0.31 nM and 142 +/- 17 fmoles/mg protein, respectively. This affinity corresponded closely with that observed in native skeletal muscle. The Ca2+ channel antagonists diltiazem and MDL 12,330A stimulated [3H]PN200-110 binding in a dose-dependent manner while flunarizine, quinacrine and trifluoperazine inhibited binding. Surprisingly, D600 also stimulated [3H]PN200-110 binding in a dose-dependent and stereoselective manner. It is concluded that the fibroblast cells used in this study provide a unique system for interactions of the Ca2+ channel ligands with the alpha 1 subunit of the skeletal muscle L-type Ca2+ channel.  相似文献   

4.
Monoclonal hybridoma cell lines secreting antibodies against the (+)-PN 200-110 and the (-)-demethoxyverapamil binding components of the voltage-dependent calcium channel from rabbit transverse-tubule membranes have been isolated. The specificity of these monoclonal antibodies was established by their ability to coimmunoprecipitate (+)-[3H]PN 200-110 and (-)-[3H]demethoxyverapamil receptors. Monoclonal antibodies described in this work cross-reacted with rat, mouse, chicken, and frog skeletal muscle Ca2+ channels but not with crayfish muscle Ca2+ channels. Cross-reactivity was also detected with membranes prepared from rabbit heart, brain, and intestinal smooth muscle. These antibodies were used in immunoprecipitation experiments with 125I-labeled detergent [3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) and digitonin] solubilized membranes. They revealed a single immunoprecipitating component of molecular weight (Mr) 170,000 in nonreducing conditions. After disulfide bridge reduction the CHAPS-solubilized (+)-PN 200-110-(-)-demethoxyverapamil binding component gave rise to a large peptide of Mr 140,000 and to smaller polypeptides of Mr 30,000 and 26,000 whereas the digitonin-solubilized receptor appeared with subunits at Mr 170,000, 140,000, 30,000, and 26,000. All these results taken together are interpreted as showing that both the 1,4-dihydropyridine and the phenylalkylamine receptors are part of a single polypeptide chain of Mr 170,000.  相似文献   

5.
The rabbit skeletal muscle T-tubule membranes preparation is the richest source of organic Ca2+ blocker receptor associated with the voltage-dependent Ca2+ channel. Solubilization by 3-[(3-cholamidopropyl)dimethyl-ammonio]-1-propane sulfonate (CHAPS) in the presence of glycerol leads to a 52% recovery of active receptors as determined by (+)[3H]PN 200-110 binding experiments. The dissociation constant of the (+) [3H]PN 200-110 solubilized-receptor complex was 0.4 +/- 0.2 nM by equilibrium binding and 0.13 nM from the rate constants of association (k1 = 0.116 nM-1 min-1) and dissociation (k-1 = 1.5 10(-2) min-1). The (+) [3H]PN 200-110 receptor has been substantially purified by a combination of filtration of Ultrogel A2 column and lectin affinity chromatography in the presence of trace amount of specifically bound (+) [3H]PN 200-110. The purified material contained polypeptides of apparent molecular weights of 142 000, 32 000 and 33 000. These three components copurified with (+)[3H]PN 200-110 binding activity.  相似文献   

6.
The existence of dihydropyridine receptor in crayfish striated muscle was proved by Northern blot analysis and 3H PN 200--110 binding. The alpha 1 subunit is encoded by a 8300 nt mRNA population and is expressed as 190 kD protein in crayfish T-tubular system, which binds 3H PN 200--110 (Bmax 1.5 +/- 0.4 pmol/mg protein and KD 6.2 +/- 0.8 nmol/l). The purified protein is phosphorylated by cAMP-dependent protein kinase. The dihydropyridine receptor in crayfish striated muscle also contains alpha 2 subunit, which on Northern blot gives the same signal as the alpha 2 subunit from rabbit skeletal muscle.  相似文献   

7.
Skeletal muscle membranes derived either from the tubular (T) network or from the sarcoplasmic reticulum (SR) were characterized with respect to the binding of the dihydropyridine, [3H]PN200-110, and the alkaloid, [3H]ryanodine; polypeptide composition; and ion channel activity. Conditions for optimizing the binding of these radioligands are discussed. A bilayer pulsing technique is described and is used to examine the channels present in these membranes. Fusion of T-tubule membranes into bilayers revealed the presence of chloride channels and dihydropyridine-sensitive calcium channels with three distinct conductances. The dihydropyridine-sensitive channels were further characterized with respect to their voltage dependence. Pulsing experiments indicated that two different populations of dihydropyridine-sensitive channels existed. Fusion of heavy SR vesicles revealed three different ion channels; the putative calcium release channel, a potassium channel, and a chloride channel. Thus, this fractionation procedure provides T-tubules and SR membranes which, with radioligand binding and single channel recording techniques, provide a useful tool to study the characteristics of skeletal muscle ion channels and their possible role in excitation-contraction coupling.  相似文献   

8.
The binding of dihydropyridine (PN200-110) to skeletal muscle microsomes (which were 84% sealed inside-out vesicles) was not influenced by the addition of calcium or magnesium nor by addition of their chelators (EDTA or EGTA) unless the vesicles were pretreated with the calcium-magnesium ionophore A23187 and EDTA to remove entrapped cations. Separation of inside-out vesicles from right-side-out vesicles by wheat germ agglutinin chromatography revealed that only the right-side-out vesicles exhibited a calcium-, magnesium-, and chelator-dependent binding of PN200-110. Dihydropyridine binding to cardiac sarcolemma membranes (which were 46% inside-out) and to solubilized skeletal muscle membranes was inhibited by EDTA and could be fully restored by 10 microM calcium or 1 mM magnesium. Calcium increased PN200-110 binding to partially purified rabbit skeletal muscle calcium channels from 3.9 pmol/mg protein to 25.5 pmol/mg protein with a pK0.5 = 6.57 +/- 0.059 and a Hill coefficient of 0.56 +/- 0.04. Magnesium increased binding from 0.7 pmol/mg protein to 16.8 pmol/mg protein with a pK0.5 = 3.88 +/- 0.085 and a Hill coefficient of 0.68 +/- 0.074. These studies suggest that calcium binding to high affinity sites or magnesium binding to low affinity sites on the extracellular side of skeletal muscle T-tubule calcium channels regulates dihydropyridine binding. Further, similar calcium and magnesium binding sites exist on the cardiac calcium channel and serve to allosterically regulate dihydropyridine binding.  相似文献   

9.
The binding of Ca2+ antagonists to soluble proteins obtained by ammonium sulphate precipitation from cytosol fraction of rabbit skeletal muscles was studied. The KD values for 3H D-888 and 3H PN 200-110 binding to soluble proteins were 21.3 +/- 3.1 nmol.l-1 and 28.8 +/- 8.9 nmol.l-1 respectively. Photoaffinity labelling of the soluble proteins with the arylazide 1,4-dihydropyridine probe 3H azidopine resulted in labelling of the 85-95 K protein band as determined by SDS polyacrylamide gel electrophoresis. Partial purification of prelabelled soluble sample by gel filtration on Sephadex G-150 gave a more precise molecular weight of 90 +/- 2.5K. Polyclonal antibodies prepared against Ca2+ channel complex from rabbit muscle T-tubules inhibited the 3H PN 200-110 binding. Our results suggest that the soluble protein with Mr = 90K +/- 2.5K may be a precursor of the large subunit of the membrane bound L-type Ca2+ channel in rabbit skeletal muscle.  相似文献   

10.
The dihydropyridine receptor is associated with the L-type Ca2+ channel in the cell membrane. In this study we have examined the effects of group-specific modification on dihydropyridine binding in heart sarcolemmal membranes isolated from the rabbit. Specifically, dithiothreitol and glutathione were employed to assess the possible role of disulfide (-SS-) bonds in the binding of [3H]dihydropyridines. NEM, PCMS and iodoacetamide were employed to examine the effect of blocking free sulfhydryl groups (-SH) on the binding of [3H]dihydropyridines to their receptor in heart sarcolemma. Glutathione inhibited [3H]PN200-110 binding to sarcolemmal membranes 100%, with an IC50 value of 50 microM, while DTT inhibited maximally by 75% with an IC50 value in the millimolar range. Alkylation of free sulfhydryl groups by NEM or iodoacetamide inhibited binding of [3H]PN200-110 binding in cardiac sarcolemma approx. 40-60%. Blocking of free sulfhydryl groups by PCMS completely inhibited [3H]PN200-110 binding to their receptor in sarcolemmal membranes in a dose-dependent manner with an IC50 value of 20 microM. These results suggest the involvement of disulfide bonds and free sulfhydryl groups in DHP binding to the L-type Ca2+ channel in heart muscle. We also examined the effect of membrane phosphorylation on the specific binding of the dihydropyridine [3H]nitrendipine to its receptor. Phosphorylation was studied in cardiac sarcolemmal as well as skeletal muscle transverse-tubule membranes. Phosphorylation due to endogenous protein kinase and cAMP-dependent protein kinase was without effect on [3H]nitrendipine binding in both cardiac sarcolemmal and skeletal muscle membranes. Addition of exogenous calmodulin under conditions known to promote Ca2+/calmodulin-dependent phosphorylation increased [3H]nitrendipine binding 20% with no alteration in KD in both types of membrane preparation. These results suggest a role for calmodylin in dihydropyridine binding to L-type Ca2+ channels.  相似文献   

11.
The voltage-dependent calcium channel from guinea-pig skeletal muscle T-tubules has been isolated with a rapid, two-step purification procedure. Reversible postlabelling of the channel-linked 1,4-dihydropyridine receptor and stereoselective photolabelling as a novel approach were employed to assess purity. A 135-fold purification to a specific activity of 1311 +/- 194 pmol/mg protein (determined by reversible equilibrium binding with (+)-[3H]PN200-110) was achieved. Three polypeptides of 155 kDa, 65 kDa and 32 kDa were identified in the purified preparation. The 155-kDa band is a glycoprotein. The arylazide photoaffinity probe (-)-[3H]azidopine bound with high affinity to solubilized membranes (Kd = 0.7 +/- 0.2 nM) and highly purified fractions (Kd = 3.1 +/- 2 nM), whereas the optical antipode (+)-azidopine was of much lower affinity. Irradiation of (-)-[3H]azidopine and (+)-[3H]azidopine receptor complexes with ultraviolet light led to preferential incorporation of the (-) enantiomer into the 155-kDa polypeptide in crude solubilized and purified preparations. The pharmacological profile of irreversible labelling of the 155-kDa glycoprotein by (-)-[3H]azidopine is identical to that found in reversible binding experiments. Specific photolabelling of the 155-kDa band by (-)-[3H]azidopine per milligram of protein increases 150-fold upon purification, whereas incorporation into non-specific bands in the crude solubilized material is identical for both, (-) and (+)-[3H]azidopine.  相似文献   

12.
S M Dunn  C Bladen 《Biochemistry》1992,31(16):4039-4045
The fluorescence changes accompanying the binding of the fluorescent calcium channel antagonist, felodipine, to transverse tubule membranes from rabbit skeletal muscle have been used to characterize low-affinity binding sites for 1,4-dihydropyridine derivatives in these preparations. In competition experiments, felodipine inhibited the high-affinity binding of (+)-[3H]PN200-110 to transverse tubule membranes with an apparent Ki of 5 +/- 2 nM. Binding of felodipine to additional low-affinity sites resulted in a large, saturable (Kd = 6 +/- 2 microM) increase in its fluorescence which could be excited either directly (380 nm) or indirectly via energy transfer from membrane protein (290 nm). The observed fluorescence enhancement was competitively inhibited by other 1,4-dihydropyridines with inhibition constants of 3-21 microM but was unaffected by the structurally unrelated calcium channel antagonists, diltiazem and verapamil, or by Ca2+, Cd2+, and La3+. Both high- and low-affinity binding sites appear to be localized in the transverse tubular system, since the magnitude of the observed fluorescence enhancement was higher in these membranes than in microsomal preparations and was directly proportional to the density of high-affinity sites for (+)-[3H]PN200-110. Furthermore, both high- and low-affinity sites appear to be conformationally coupled since, over the same concentration range that the fluorescence changes were observed, felodipine accelerated the rate of dissociation of [3H]PN200-110 previously bound to its high-affinity sites. Similar behavior has previously been reported for other 1,4-dihydropyridines [Dunn, S. M. J., & Bladen, C. (1991) Biochemistry 30, 5716-5721].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A monoclonal antibody, mAb 1A, that immunoprecipitates the [3H]PN200-110-binding complex from rabbit skeletal muscle has been used to study the subunit structure of the dihydropyridine-sensitive, voltage-activated calcium channel. Digitonin-solubilized [3H]PN200-110-binding component, purified by wheat germ agglutinin chromatography, sediments as a 21 S complex. The sedimentation coefficient of the complex is increased to about 24 S after incubation with mAb 1A IgG. Four polypeptides with apparent molecular weights under nonreducing conditions of 220,000, 200,000, 61,000, and 33,000 co-sediment with the 21 S complex. mAb 1A recognizes the Mr 200,000 polypeptide, as shown by Western blotting analysis. [3H] PN200-110 complex purified by wheat germ agglutinin chromatography followed by immunoaffinity chromatography on an mAb 1A column is comprised primarily of the same four polypeptides. When analyzed by sodium dodecyl sulfate gel electrophoresis under reducing conditions, the Mr 220,000 protein migrates as a polypeptide of Mr 143,000; the mobility of the Mr 200,000 protein recognized by mAb 1A is unaffected by reduction. Thus, the Mr 200,000 polypeptide appears to be a previously undescribed component of the dihydropyridine-binding complex and, in association with the other polypeptides, may comprise the voltage-sensitive calcium channel.  相似文献   

14.
Purified calcium channels have three allosterically coupled drug receptors   总被引:4,自引:0,他引:4  
(-)-[3H]Desmethoxyverapamil and (+)-[3H]PN 200-110 were employed to characterize phenylalkylamine-selective and 1,4-dihydropyridine-selective receptors on purified Ca2+ channels from guinea-pig skeletal muscle t-tubules. In contrast to the membrane-bound Ca2+ channel, d-cis-diltiazem (EC50 = 4.5 +/- 1.7 microM) markedly stimulated the binding of (+)-[3H]PN 200-110 to the purified ionic pore. In the presence of 100 microM d-cis-diltiazem (which binds to the benzothiazepine-selective receptors) the Bmax for (+)-[3H]PN 200-110 increased from 497 +/- 81 to 1557 +/- 43 pmol per mg protein, whereas the Kd decreased from 8.8 +/- 1.7 to 4.7 +/- 1.8 nM at 25 degrees C. P-cis-Diltiazem was inactive. (-)-Desmethoxyverapamil, which is a negative heterotropic allosteric inhibitor of (+)-[3H]IN 200-110 binding to membrane-bound channels, stimulated 1,4-dihydropyridine binding to the isolated channel. (-)-[3H]Desmethoxyverapamil binding was stimulated by antagonistic 1,4-dihydropyridines [(+)-PN 200-110 greater than (-)(R)-202-791 greater than (+)(4R)-Bay K 8644] whereas the agonistic enantiomers (+)(S)-202-791 and (-)(4S)-Bay K 8644 were inhibitory and (-)-PN 200-110 was inactive. The results indicate that three distinct drug-receptor sites exist on the purified Ca2+ channel, two of which are shown by direct labelling to be reciprocally allosterically coupled.  相似文献   

15.
The 1,4-dihydropyridine receptor purified from rabbit skeletal muscle triads was shown to contain four protein components of 175,000, 170,000, 52,000, and 32,000 Da when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. Monoclonal antibodies capable of specifically immunoprecipitating the [3H]PN200-110-labeled dihydropyridine receptor from digitonin-solubilized triads recognized the 170,000-Da protein on nitrocellulose transfers of skeletal muscle triads, transverse tubular membranes, and purified dihydropyridine receptor. Wheat germ agglutinin peroxidase stained the 175,000-Da protein on similar nitrocellulose transfers, demonstrating that the 175,000-Da protein is the glycoprotein subunit of the purified dihydropyridine receptor. The apparent molecular weight of the Mr 170,000 protein remained unchanged with reduction, whereas the apparent molecular weight of the glycoprotein subunit shifted from 175,000 to 150,000 upon reduction. These results demonstrate that the 1,4-dihydropyridine receptor of the voltage-dependent Ca2+ channel from rabbit skeletal muscle contains two distinct high molecular weight subunits of 175,000 and 170,000.  相似文献   

16.
[3H]PN 200-110, a potent chiral benzoxadiazol 1,4-dihydropyridine Ca2+ antagonist was used to label guinea pig skeletal muscle Ca2+ channels. [3H]PN 200-110 binds with a Kd of approximately 1 nM to a homogeneous population of non-interacting binding sites; d-cis-diltiazem, but not l-cis-diltiazem increases the Bmax of [3H]PN 200-110 by 25% and slows the dissociation rate 3-fold at 37 degrees C. Target size analysis of the [3H]PN 200-110-labelled Ca2+ channels with 10 MeV electrons gave an Mr of 136 000 which was reduced to 75 000 by d-cis-diltiazem treatment of membranes. It is concluded that positive heterotropic allosteric regulation by d-cis-diltiazem is accompanied by channel oligomer dissociation.  相似文献   

17.
The dihydropyridine receptor was purified from rabbit skeletal muscle microsomes in the presence of [3H]nitrendipine plus diltiazem or [3H](+)PN 200-110 to an apparent density of 1.5-2 nmol binding sites/mg protein. Sodium dodecyl sulfate gel electrophoresis in the absence of reducing agents yielded three peptide bands of 142, 56 and 30 kDa in a relative ratio of 11:1:1.3, whereas in the presence of 40 mM dithiothreitol bands of 142, 122, 56, 31, 26 and 22 kDa were obtained in a relative ratio of 5.5:2.2:1:0.9:14:0.09. This gel pattern was observed regardless of whether the receptor was purified as a complex with nitrendipine plus diltiazem or with (+)PN 200-110. cAMP-dependent protein kinase phosphorylated preferentially the 142-kDa band up to a stoichiometry of 0.82 +/- 0.07 (15) mol phosphate/mol peptide. The 56-kDa band was phosphorylated only in substoichiometric amounts. [3H]PN 200-110 bound at 4 degrees C to one site with apparent Kd and Bmax values of 9.3 +/- 1.7 nM and 2.2 +/- 0.3 (3) nmol/mg protein, respectively. The binding was stereospecific and was not observed in the presence of 1 mM EGTA. Desmethoxyverapamil interfered with the binding of [3H]PN 200-110 in an apparent allosteric manner. (-)Desmethoxyverapamil inhibited the binding of [3H]PN 200-110 at 37 degrees C and stimulated it at 18 degrees C. In agreement with these results, (-)desmethoxyverapamil increased the dissociation rate of [3H]PN 200-110 from 0.29 min-1 to 0.38 min-1 at 37 degrees C and decreased it threefold from 0.046 min-1 to 0.017 min-1 at 18 degrees C. The (+)isomer of desmethoxyverapamil inhibited PN 200-110 binding at all temperatures tested. d-cis-Diltiazem stimulated the binding of [3H]PN 200-110 at 37 degrees C with an apparent EC50 of 1.4 microM and decreased the dissociation rate from 0.29 min-1 to 0.11 min-1. The stimulatory effect of d-cis-diltiazem was temperature-dependent and was seen only at temperatures above 18 degrees C. These results suggest that the purified dihydropyridine receptor retains the basic properties of the membrane-bound receptor and contains separate sites for at least dihydropyridines and phenylalkylamines.  相似文献   

18.
Photoaffinity labeling of isolated triads and purified dihydropyridine receptor with [3H]azidopine and (+)-[3H]PN200-110 has been used to identify and characterize the dihydropyridine-binding subunit of the 1,4-dihydropyridine receptor of rabbit skeletal muscle. The 1,4-dihydropyridine receptor purified from rabbit skeletal muscle triads contains four protein subunits of 175,000, 170,000, 52,000, and 32,000 Da (Leung, A., Imagawa, T., and Campbell, K. P. (1987) J. Biol. Chem. 262, 7943-7946). Photoaffinity labeling of isolated triads with [3H]azidopine resulted in specific and covalent incorporation of [3H]azidopine into only the 170,000-Da subunit of the dihydropyridine receptor and not into the 175,000-Da glycoprotein subunit of the receptor. The [3H]azidopine-labeled 170,000-Da subunit was separated from the 175,000-Da glycoprotein subunit by sequential elution from a wheat germ agglutinin-Sepharose column with 1% sodium dodecyl sulfate followed by 200 mM N-acetylglucosamine. Photoaffinity labeling of purified dihydropyridine receptor with [3H]azidopine or (+)-[3H]PN200-110 also resulted in the specific and covalent incorporation of either ligand into only the 170,000-Da subunit. Therefore, our results show that the dihydropyridine-binding subunit of the skeletal muscle 1,4-dihydropyridine receptor is the 170,000-Da subunit and not the 175,000-Da glycoprotein subunit.  相似文献   

19.
The characteristics of the specific bindings of [3H]nitrendipine (Nit) and [3H](+)PN200-110 (PN) to crude membranes from rat skeletal, cardiac, and uterine muscle and whole brain were investigated, with special interest in the effect of UV irradiation on these bindings. The specific bindings of [3H]Nit and [3H](+)PN to these crude membranes were saturable and reversible. The specific bindings of [3H]Nit to all these membranes except crude skeletal membranes was maximum in the presence of 0.15 M NaCl plus 1 mM CaCl2 and minimal in the absence of these ions, but the specific bindings of [3H](+)PN to these crude membranes was not affected significantly by these ions. A calcium agonist and antagonists inhibited the specific bindings of [3H]Nit and [3H](+)PN to these crude membranes, the order of their inhibitory effects on specific [3H]Nit bindings being roughly Nit greater than or equal to (+)PN greater than or equal to (-)PN much greater than Bay K 8644 (Bay) greater than verapamil (Ver) greater than diltiazem (Dil). In crude skeletal membranes only, PN caused significant stereospecific inhibition. The order of inhibitions of specific [3H](+)PN bindings to these crude membranes was generally (+)PN greater than Nit greater than or equal to (-)PN greater than Bay much greater than Ver greater than or equal to Dil. In all these crude membranes, UV irradiation completely prevented decrease in the amount of specific binding of [3H](+)PN binding on addition of excess unlabeled (+)PN. These findings suggested that [3H]Nit and [3H](+)PN bind to voltage-sensitive calcium channels in crude membranes from rat skeletal, cardiac, and uterine muscle and whole brain, and that UV irradiation changes the specific bindings of [3H]Nit and [3H](+)PN from reversible to irreversible bindings.  相似文献   

20.
M Takahashi  W A Catterall 《Biochemistry》1987,26(17):5518-5526
Polyclonal antibodies (PAC-2) against the purified skeletal muscle calcium channel were prepared and shown to be directed against alpha subunits of this protein by immunoblotting and immunoprecipitation. These polypeptides have an apparent molecular weight of 162,000 without reduction of disulfide bonds. Under conditions where the functional properties of the purified skeletal muscle calcium channel are retained, beta subunits (Mr 50,000) and gamma subunits (Mr 33,000) are coprecipitated, demonstrating specific noncovalent association of these three polypeptides in the purified skeletal muscle channel. PAC-2 immunoprecipitated cardiac calcium channels labeled with [3H]isopropyl 4-(2,1,3-benzoxadiazol-4-yl)-1,4-dihydro-2,6-dimethyl-5- (methoxycarbonyl)pyridine-3-carboxylate ([3H]PN200-110) at a 3-fold higher concentration than skeletal muscle channels. Preincubation with cardiac calcium channels blocked only 49% of the immunoreactivity of PAC-2 toward skeletal muscle channels, indicating that these two proteins have both homologous and distinct epitopes. The immunoreactive component of the cardiac calcium channel was identified by immunoprecipitation and polyacrylamide gel electrophoresis as a polypeptide with an apparent molecular weight of 170,000 before reduction of disulfide bonds and 141,000 after reduction, in close analogy with the properties of the alpha 2 subunits of the skeletal muscle channel. It is concluded that these two calcium channels have a homologous, but distinct, alpha subunit as a major polypeptide component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号