首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of gap junctional coupling, sodium ion channel distribution, and extracellular conductivity on transverse conduction in cardiac tissue is explored using a microdomain model that incorporates aspects of the inhomogeneous cellular structure. The propagation velocities found in our model are compared to those in the classic bidomain model and indicate a strong ephaptic microdomain contribution to conduction depending on the parameter regime. We show that ephaptic effects can be quite significant in the junctional spaces between cells, and that the cell activation sequence is modified substantially by these effects. Further, we find that transverse propagation can be maintained by ephaptic effects, even in the absence of gap junctional coupling. The mechanism by which this occurs is found to be cablelike in that the junctional regions act like inverted cables. Our results provide insight into several recent experimental studies that indirectly indicate a mode of action potential propagation that does not rely exclusively on gap junctions.  相似文献   

2.
The effect of gap junctional coupling, sodium ion channel distribution, and extracellular conductivity on transverse conduction in cardiac tissue is explored using a microdomain model that incorporates aspects of the inhomogeneous cellular structure. The propagation velocities found in our model are compared to those in the classic bidomain model and indicate a strong ephaptic microdomain contribution to conduction depending on the parameter regime. We show that ephaptic effects can be quite significant in the junctional spaces between cells, and that the cell activation sequence is modified substantially by these effects. Further, we find that transverse propagation can be maintained by ephaptic effects, even in the absence of gap junctional coupling. The mechanism by which this occurs is found to be cablelike in that the junctional regions act like inverted cables. Our results provide insight into several recent experimental studies that indirectly indicate a mode of action potential propagation that does not rely exclusively on gap junctions.  相似文献   

3.
Hepatitis C virus (HCV) infection is dependent on at least three coreceptors: CD81, scavenger receptor BI (SR-BI), and claudin-1. The mechanism of how these molecules coordinate HCV entry is unknown. In this study we demonstrate that a cell culture-adapted JFH-1 mutant, with an amino acid change in E2 at position 451 (G451R), has a reduced dependency on SR-BI. This altered receptor dependency is accompanied by an increased sensitivity to neutralization by soluble CD81 and enhanced binding of recombinant E2 to cell surface-expressed and soluble CD81. Fractionation of HCV by density gradient centrifugation allows the analysis of particle-lipoprotein associations. The cell culture-adapted mutation alters the relationship between particle density and infectivity, with the peak infectivity occurring at higher density than the parental virus. No association was observed between particle density and SR-BI or CD81 coreceptor dependence. JFH-1 G451R is highly sensitive to neutralization by gp-specific antibodies, suggesting increased epitope exposure at the virion surface. Finally, an association was observed between JFH-1 particle density and sensitivity to neutralizing antibodies (NAbs), suggesting that lipoprotein association reduces the sensitivity of particles to NAbs. In summary, mutation of E2 at position 451 alters the relationship between particle density and infectivity, disrupts coreceptor dependence, and increases virion sensitivity to receptor mimics and NAbs. Our data suggest that a balanced interplay between HCV particles, lipoprotein components, and viral receptors allows the evasion of host immune responses.  相似文献   

4.
5.
The forces that arise from the actin cytoskeleton play a crucial role in determining the cell shape. These include protrusive forces due to actin polymerization and adhesion to the external matrix. We present here a theoretical model for the cellular shapes resulting from the feedback between the membrane shape and the forces acting on the membrane, mediated by curvature-sensitive membrane complexes of a convex shape. In previous theoretical studies we have investigated the regimes of linear instability where spontaneous formation of cellular protrusions is initiated. Here we calculate the evolution of a two dimensional cell contour beyond the linear regime and determine the final steady-state shapes arising within the model. We find that shapes driven by adhesion or by actin polymerization (lamellipodia) have very different morphologies, as observed in cells. Furthermore, we find that as the strength of the protrusive forces diminish, the system approaches a stabilization of a periodic pattern of protrusions. This result can provide an explanation for a number of puzzling experimental observations regarding cellular shape dependence on the properties of the extra-cellular matrix.  相似文献   

6.
Hepatitis B virus (HBV) genotype B and C are two major genotypes that are prevalent in Asia and differ in natural history and disease progression. The impact of HBV genotypes on viral replication and protein expression has been explored by the transfection of hepatoma cells with replication-competent HBV DNA, which mimics the later stages of the viral life cycle. However, the influence of HBV genotypes on the early events of viral infection remains undetermined, mainly due to the difficulties in obtaining sufficient infectious viral particles for infection assays. Here, we report that a high-titer HBV inoculum can be generated from the transient transfection-based cell model after optimizing transfection conditions and modifying the HBV-expressing construct. By performing in vitro infection assays using transiently transfected derived viruses, we found that clinical genotype C isolates possessed higher infectivity than genotype B isolates. Moreover, we identified a naturally occurring mutation sL21S in small hepatitis B surface protein, which markedly decreased the infectivity of HBV genotype C isolates, but not that of genotype B isolates. In summary, using infectious viral particles provided by the optimized transient transfection-based cell model, we have been able to investigate a wide range of HBV variants on viral infectivity, which may contribute to our understanding of the reasons for different clinical outcomes in HBV infections and the development of therapeutic drugs targeting the early stages of HBV life cycle.  相似文献   

7.
CD4+ T-cell depletion during acute human immunodeficiency virus infection occurs predominantly in the gastrointestinal mucosa. Using experimental data on SIV(mac251) viral load in blood and CD4+ T cells in the jejunum, we modeled the kinetics of CD4+ T-cell infection and death and estimated the viral infectivity. The infectivity of SIV(mac251) is higher than previously estimated for SHIV89.6P infection, but this higher infectivity is offset by a lower average peak viral load in SIV(mac251). Thus, the dynamics of target cell infection and death are remarkably similar between a CXCR4- and a CCR5-tropic infection in vivo.  相似文献   

8.
9.
ABSTRACT: BACKGROUND: The dynamics of viral infections have been studied extensively in a variety of settings, both experimentally and with mathematical models. The majori-ty of mathematical models assumes that only one virus can infect a given cell at a time. It is, however, clear that especially in the context of high viral load, cells can become infected with multiple copies of a virus, a process called coinfection. This has been best demonstrated experimentally for human immunodeficiency virus (HIV), although it is thought to be equally relevant for a number of other viral infections. In a previously explored mathematical model, the viral output from an infected cell does not depend on the number of viruses that reside in the cell, i.e. viral replication is limited by cellular rather than viral factors. In this case, basic virus dynamics properties are not altered by coinfection. Results: Here, we explore the alternative assumption that multiply infected cells are characterized by an increased burst size and find that this can fundamentally alter model predictions. Under this scenario, establishment of infection may not be solely determined by the basic reproductive ratio of the virus, but can depend on the initial virus load. Upon infection, the virus population need not follow straight exponential growth. Instead, the exponential rate of growth can increase over time as virus load becomes larger. Moreover, the model suggests that the ability of anti-viral drugs to suppress the virus population can depend on the virus load upon initiation of therapy. This is because more coinfected cells, which produce more virus, are present at higher virus loads. Hence, the degree of drug resistance is not only determined by the viral genotype, but also by the prevalence of coinfected cells. Conclusions: Our work shows how an increased burst size in multiply infected cells can alter basic infection dynamics. This forms the basis for future experimental testing of model assumptions and predictions that can distinguish between the different scenarios.  相似文献   

10.
11.
Human immunodeficiencey virus, type 1 (HIV-1) encodes three proteins, Nef, Vpu, and gp160, that down-modulate surface expression of the CD4 receptor during viral infection. In the present study, we have investigated the role of CD4 down-modulation in the HIV-1 infection cycle, primarily from the perspective of Vpu function. We report here that, like Nef, Vpu-mediated CD4 degradation modulates positively HIV-1 infectivity. Our data reveal that accumulation of CD4 at the cell surface of Vpu-deficient HIV-1-producing cells leads to an efficient recruitment of CD4 into virions and to an impairment of viral infectivity. This CD4-mediated inhibition of viral infectivity was not observed when a CD4 mutant unable to bind Env gp120 was used or when VSV-G glycoprotein was utilized to pseudotype viruses, suggesting that an interaction between CD4 and gp120 is required for interference. Indeed, protein analysis of Vpu-defective viral particles reveals that CD4 recruitment is associated with an increased formation of gp120-CD4 complexes at the virion surface. Interestingly, we did not detect any difference at the level of total virion-associated Env glycoproteins between wild-type and Vpu-defective virus, indicating that accumulation of CD4 at the cell surface and recruitment of CD4 into Vpu-defective HIV-1 particles exert a negative effect on viral infectivity, most likely by promoting the formation of nonfunctional gp120-CD4 complexes at the virion surface. Finally, we show that both Vpu- and Nef-induced CD4 down-modulation activities are required for production of fully infectious particles in CD4+ T cell lines and primary cells, an observation that has clear implications for viral spread in vivo.  相似文献   

12.
In chronic viral infection, low levels of viral replication and infectious particle production are maintained over long periods, punctuated by brief bursts of high viral production and release. We apply well-established principles of modelling virus dynamics to the study of chronic viral infection, demonstrating that a model which incorporates the distinct contributions of cytotoxic T lymphocytes (CTLs) and antibodies exhibits long periods of quiescence followed by brief bursts of viral production. This suggests that for recurrent viral infections, no special mechanism or exogenous trigger is necessary to provoke an episode of reactivation; rather, the system may naturally cycle through recurrent episodes at intervals which can be many years long. We also find that exogenous factors which cause small fluctuations in the natural course of the infection can trigger a recurrent episode. Our model predicts that longer periods between recurrences are associated with more severe viral episodes. Four factors move the system towards less frequent, more severe episodes: decreased viral infectivity, decreased CTL efficacy, decreased memory T cell response and increased antibody efficacy.  相似文献   

13.
H Liu  X Wu  M Newman  G M Shaw  B H Hahn    J C Kappes 《Journal of virology》1995,69(12):7630-7638
The vif gene of human and simian immunodeficiency viruses (HIV and SIV) encodes a late gene product that is essential for viral infectivity in natural target cells. Virions produced in the absence of Vif are abnormal in their ultrastructural morphology and are severely impaired in the ability to complete proviral DNA synthesis upon entry into new target cells. Because previous studies failed to detect Vif protein in virus particles, Vif is believed to influence virus infectivity indirectly, by affecting virion assembly, release, and/or maturation. In this report, we reexamined the possibility that Vif is a virion-associated protein. Utilizing high-titer Vif-specific antibodies, a sensitive immunoblot technique, and highly concentrated virus preparations, we detected a 23-kDa Vif-reactive protein in wild-type HIV type 1 (HIV-1) and a 27-kDa Vif-reactive protein in wild-type SIVSM virions. Neither protein was present in virions derived from vif-deficient HIV-1 and SIVSM proviral constructs. Vif protein content was similar among different strains of HIV-1 and was independent of the cell type (permissive or nonpermissive) used to produce the virus. To determine the subvirion localization of Vif, HIV-1 virions were treated with proteinase K or Triton X-100 to remove virion surface proteins and the viral membrane, respectively, purified through sucrose, and analyzed by immunoblot analysis. Vif protein content was not affected by the removal of external surface proteins or by the removal of the viral membrane and submembrane p17Gag matrix protein. Instead, Vif colocalized with viral core structures which sedimented at a density of 1.25 g/ml on linear sucrose gradients (enveloped HIV-1 particles sediment at a density of 1.17 g/ml). Finally, the amount of Vif protein packaged into virions was estimated to be on the order of 1 molecule of Vif for every 20 to 30 molecules of p24Gag, or between 60 and 100 molecules of Vif per particle. These results indicate that Vif represents an integral component of HIV and SIV particles and raise the possibility that it plays a direct role in early replication events.  相似文献   

14.
Infectious pathogens compete and are subject to natural selection at multiple levels. For example, viral strains compete for access to host resources within an infected host and, at the same time, compete for access to susceptible hosts within the host population. Here we propose a novel approach to study the interplay between within- and between-host competition. This approach allows for a single host to be infected by and transmit two strains of the same pathogen. We do this by nesting a model for the host–pathogen dynamics within each infected host into an epidemiological model. The nesting of models allows the between-host infectivity and mortality rates suffered by infected hosts to be functions of the disease progression at the within-host level. We present a general method for computing the basic reproduction ratio of a pathogen in such a model. We then illustrate our method using a basic model for the within-host dynamics of viral infections, embedded within the simplest susceptible–infected (SI) epidemiological model. Within this nested framework, we show that the virion production rate at the level of the cell–virus interaction leads, via within-host competition, to the presence or absence of between-host level competitive exclusion. In particular, we find that in the absence of mutation the strain that maximizes between-host fitness can outcompete all other strains. In the presence of mutation we observe a complex invasion landscape showing the possibility of coexistence. Although we emphasize the application to human viral diseases, we expect this methodology to be applicable to be many host–parasite systems.  相似文献   

15.
Artificial mixtures of plasma membrane vesicles produced by microcavitation from infected and uninfected cells band at the same density on isopycnic centrifugation in sucrose density gradient. However, after reaction with antiviral antibody, the density of the infected cell plasma membrane vesicles increases, and the infected and uninfected cell membranes are quantitatively separable on isopycnic centrifugation. Plasma membrane vesicles prepared from cells doubly labeled before and after infection with radioactive amino acids and reacted with antibody banded at a high density. Polyacrylamide gel electropherograms show that the vesicles reacted with antibody consist of both host- and virus-specific membrane proteins. Microcavitation does not disrupt viral envelopes since infectivity is not affected by this procedure. We conclude that viral and cellular proteins in the plasma membrane preparations are contiguous.  相似文献   

16.
Maturation and release of human immunodeficiency virus type 1 (HIV-1) is targeted at the pseudopod of infected mononuclear cells. However, the intracellular mechanism or targeting signals leading to this polarized viral maturation are yet to be identified. We have recently demonstrated the presence of a functional YXXL motif for specific targeting of HIV-1 virions to the basolateral membrane surface in polarized epithelial Madin-Darby canine kidney cells (MDCK). Site-directed mutagenesis was used to demonstrate that the membrane-proximal tyrosine in the intracytoplasmic tail of the HIV-1 transmembrane glycoprotein (gp41) is an essential component of this signal. In the present study, immunolocalization of viral budding allowed us to establish that this tyrosine-based signal is involved in determining the exact site of viral release at the surface of infected mononuclear cells. Substitution of the critical tyrosine residue was also shown to increase the amount of envelope glycoprotein at the cell surface, supporting previous suggestions that the tyrosine-based motif can promote endocytosis. Although alteration of the dual polarization-endocytosis motif did not affect the infectivity of cell-free virus, it could play a key role in cell-to-cell viral transmission. Accordingly, chronically infected lymphocytes showed a reduced ability to transmit the mutant virus to a cocultivated cell line. Overall, our data indicate that the YXXL targeting motif of HIV is active in various cell types and could play an important role in viral propagation; this may constitute an alternative target for HIV therapeutics and vaccine development.  相似文献   

17.
In an attempt to experimentally define the roles of viral proteins encoded by the B19 genome in the viral life cycle, we utilized the B19 infectious clone constructed in our previous study to create two groups of B19 mutant genomes: (i) null mutants, in which either a translational initiation codon for each of these viral genes was substituted by a translational termination codon or a termination codon was inserted into the open reading frame by a frameshift; and (ii) a deletion mutant, in which half of the hairpin sequence was deleted at both the 5' and the 3' termini. The impact of these mutations on viral infectivity, DNA replication, capsid protein production, and distribution was systematically examined. Null mutants of the NS and VP1 proteins or deletion of the terminal hairpin sequence completely abolished the viral infectivity, whereas blocking expression of the 7.5-kDa protein or the putative protein X had no effect on infectivity in vitro. Blocking expression of the proline-rich 11-kDa protein significantly reduced B19 viral infectivity, and protein studies suggested that the expression of the 11-kDa protein was critical for VP2 capsid production and trafficking in infected cells. These findings suggest a previously unrecognized role for the 11-kDa protein, and together the results enhance our understanding of the key features of the B19 viral genome and proteins.  相似文献   

18.
Does target cell depletion, innate immunity, or adaptive immunity play the dominant role in controlling primary acute viral infections? Why do some individuals have higher peak virus titers than others? Answering these questions is a basic problem in immunology and can be particularly difficult in humans due to limited data, heterogeneity in responses in different individuals, and limited ability for experimental manipulation. We address these questions for infections following vaccination with the live attenuated yellow fever virus (YFV-17D) by analyzing viral load data from 80 volunteers. Using a mixed effects modeling approach, we find that target cell depletion models do not fit the data as well as innate or adaptive immunity models. Examination of the fits of the innate and adaptive immunity models to the data allows us to select a minimal model that gives improved fits by widely used model selection criteria (AICc and BIC) and explains why it is hard to distinguish between the innate and adaptive immunity models. We then ask why some individuals have over 1000-fold higher virus titers than others and find that most of the variation arises from differences in the initial/maximum growth rate of the virus in different individuals.  相似文献   

19.
Magnus C  Regoes RR 《PloS one》2012,7(3):e33441
Virions of the Human Immunodeficiency Virus (HIV) infect cells by first attaching with their surface spikes to the CD4 receptor on target cells. This leads to conformational changes in the viral spikes, enabling the virus to engage a coreceptor, commonly CCR5 or CXCR4, and consecutively to insert the fusion peptide into the cellular membrane. Finally, the viral and the cellular membranes fuse. The HIV spike is a trimer consisting of three identical heterodimers composed of the gp120 and gp41 envelope proteins. Each of the gp120 proteins in the trimer is capable of attaching to the CD4 receptor and the coreceptor, and each of the three gp41 units harbors a fusion domain. It is still under debate how many of the envelope subunits within a given trimer have to bind to the CD4 receptors and to the coreceptors, and how many gp41 protein fusion domains are required for fusion. These numbers are referred to as subunit stoichiometries. We present a mathematical framework for estimating these parameters individually by analyzing infectivity assays with pseudotyped viruses. We find that the number of spikes that are engaged in mediating cell entry and the distribution of the spike number play important roles for the estimation of the subunit stoichiometries. Our model framework also shows why it is important to subdivide the question of the number of functional subunits within one trimer into the three different subunit stoichiometries. In a second step, we extend our models to study whether the subunits within one trimer cooperate during receptor binding and fusion. As an example for how our models can be applied, we reanalyze a data set on subunit stoichiometries. We find that two envelope proteins have to engage with CD4-receptors and coreceptors and that two fusion proteins must be revealed within one trimer for viral entry. Our study is motivated by the mechanism of HIV entry but the experimental technique and the model framework can be extended to other viral systems as well.  相似文献   

20.
HIV-1 spreads by cell-free particles and through direct cell contacts. To discriminate between these two modes of dissemination, an assay in which the cells are cultured under shaking conditions impairing cell-to-cell transmission has been described. We addressed the impact of shaking on HIV-1 particle infectivity. Kinetics of HIV-1 infection in static or shaking conditions confirmed that HIV-1 replication is reduced in mobile lymphocyte T cells. Strikingly, the infectivity of viruses produced by mobile lymphocytes was dramatically reduced. In parallel, the amount of envelope protein present on these particles showed a continuous decrease over time. We conclude that inefficient HIV-1 replication in mobile lymphocytes in this experimental system is not only due to avoidance of viral cell-to-cell transfer but also to the loss of infectivity of the viral particles due to the alteration of the composition and functionality of the particles produced by these lymphocytes. It is important to take these observations into account when studying viral transmission under shaking conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号