首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NTRE 7 is an avian retrovirus recombinant of the endogenous nononcogenic Rous-associated virus-0 (RAV-0) and the oncogenic, exogenous, transformation-defective (td) Prague strain of Rous sarcoma virus B (td-PrRSV-B). Oligonucleotide mapping had shown that the recombinant virus is indistinguishable from its RAV-0 parent except for the 3'-end sequences, which were derived from td-PrRSV-B. However, the virus exhibits properties which are typical of an exogenous virus: it grows to high titers in tissue culture, and it is oncogenic in vivo. To accurately define the genetic region responsible for these properties, we determined the nucleotide sequences of the recombinant and its RAV-0 parent by using molecular clones of their DNA. These were compared with sequences already available for PrRSV-C, a virus closely related to the exogenous parent td-PrRSV-B. The results suggested that the crossover event which generated NTRE 7 took place in a region -501 to -401 nucleotides from the 3' end of the td-PrRSV parental genome and that sequences to the right of the recombination region were responsible for its growth properties and oncogenic potential. These sequences included a 148-base-pair exogenous-virus-specific region that was absent from the RAV-0 genome and the U3 region of the long terminal repeat. Since the exogenous-virus-specific sequences are expected to be missing from transformation-defective mutants of the Schmidt-Ruppin strain of RSV, which, like other exogenous viruses, grow to high titers in tissue culture and are oncogenic in vivo, we concluded that the growth properties and oncogenic potential of the exogenous viruses are determined by sequences in the U3 region of the long terminal repeat. However, we propose that the exogenous-virus-specific region may play a role in determining the oncogenic spectrum of a given oncogenic virus.  相似文献   

2.
A replication-defective deletion mutant of Prague Rous sarcoma virus (RSV), which lacks functional gag, pol, and env genes, was crossed with a transformation-defective deletion mutant derived from Schmidt-Ruppin RSV. Transformation- and replication-competent viruses were generated in the cross. Characterization of one of these rescued viruses indicated that it was a nondefective recombinant containing the src gene of the replication-defective mutant plus the replicative genes of the transformation-defective virus. These results indicate that, contrary to previous reports, asymmetric recombination between RSV deletion mutants can result in the formation of nondefective RSV.  相似文献   

3.
Three clones of morphologically altered cells (L(-)MC29) of singular properties were isolated from MC29 (subgroup A) leukosis virus-infected chick embryo cells. Supernatant fluids from cultures of the cloned cells produced no transforming or interfering activity on chick embryo cells susceptible to known avian leukosis-sarcoma viruses. No virus associated with the cells was demonstrable by fluorescent-antibody staining or by electron microscopy. All L(-)MC29 clone cells were activated, however, by four strains of Rous-associated viruses (RAV) representative of A, B, C, and D subgroup avian leukosis viruses and by two strains of MC29 virus. Virus L(-)MC29 cells activated by superinfection with RAV-1 and RAV-2 was characterized by helper-dependent and helper-independent properties. These findings suggest that the strain MC29 leukosis virus, or a component thereof, possesses properties of defectiveness similar to those of the Bryan high-titer Rous sarcoma virus.  相似文献   

4.
The nucleotide sequence of the env gp85-coding domain from two avian sarcoma and leukosis retrovirus isolates was determined to identify host range and antigenic determinants. The predicted amino acid sequence of gp85 from a subgroup D virus isolate of the Schmidt-Ruppin strain of Rous sarcoma virus was compared with the previously reported sequences of subgroup A, B, C, and E avian sarcoma and leukosis retroviruses. Subgroup D viruses are closely related to the subgroup B viruses but have an extended host range that includes the ability to penetrate certain mammalian cells. There are 27 amino acid differences shared between the subgroup D sequence and three subgroup B sequences. At 16 of these sites, the subgroup D sequence is identical to the sequence of one or more of the other subgroup viruses (A, C, and E). The remaining 11 sites are specific to subgroup D and show some clustering in the two large variable regions that are thought to be major determinants of host range. Biological analysis of recombinant viruses containing a dominant selectable marker confirmed the role of the gp85-coding domain in determining the host range of the subgroup D virus in the infection of mammalian cells. We also compared the sequence of the gp85-coding domain from two subgroup A viruses, Rous-associated virus type 1 and a subgroup A virus of the Schmidt-Ruppin strain of Rous sarcoma virus. The comparison revealed 24 nonconservative amino acid changes, of which 6 result in changes in potential glycosylation sites. The positions of 10 amino acid differences are coincident with the positions of 10 differences found between two subgroup B virus env gene sequences. These 10 sites identify seven domains in the sequence which may constitute determinants of type-specific antigenicity. Using a molecular recombinant, we demonstrated that type-specific neutralization of two subgroup A viruses was associated with the gp85-coding domain of the virus.  相似文献   

5.
Avian retroviruses lacking an oncogene, such as Rous-associated virus 1 (RAV-1), RAV-2, and td mutants of Rous sarcoma virus (RSV), can nevertheless cause leukemias and other neoplastic diseases. During this process, viral DNA integrates near a cellular proto-oncogene, such as c-myc, and thus de-regulates its expression. The virus RAV-0, on the other hand, is known to be non-oncogenic even in long-term in vivo infections of domestic chickens. The major difference between oncogenic and non-oncogenic viruses is found within the U3 region of the long terminal repeat (LTR) which is known to harbor the promoter and enhancer elements. We therefore wanted to see whether viral oncogenicity was correlated with enhancer activity. Using a variety of techniques (including the SV40 'enhancer trap' from which we obtained RSV-SV40 recombinant viruses), we demonstrate that a strong enhancer exists within the LTRs of both RSV and RAV-1. In contrast, no enhancer is present in RAV-0, although RAV-0 has functional promoter elements. Our data therefore strongly support a concept of oncogenesis by enhancer insertion.  相似文献   

6.
7.
The 3' terminal region of the Prague strain of Rous sarcoma virus (PrRSV) contains at least three distinct domains that comprise two functional enhancer elements. Two of these domains (designated B and C) are found in the U3 region of the 3' long terminal repeat (LTR) while the third (designated A) is located in the sequences immediately preceding the LTR termed XSR sequences. Combinations of adjacent domains [e.g., (A + B or B + C)] are capable of activating the expression of the SV40 early promoter (21 bp repeats and TATA box) coupled to coding sequences from the prokaryotic gene chloramphenicol acetyltransferase (CAT) while a single domain is inactive. Furthermore, duplication or triplication of the central domain B restores activity. The related, Schmidt-Ruppin, strain of RSV, contains an almost identical 3' LTR element, but differs in the enhancer sequences immediately preceding the 3' LTR. A model is presented in which the sequence differences may contribute to the difference in disease spectrum of transformation defective (td) variants of these viruses.  相似文献   

8.
Endogenous retroviruses of chickens are closely related to exogenous viruses isolated from spontaneous tumors in the same species, yet differ in a number of important characteristics, including the ability to transform cells in culture, ability to cause sarcomas or leukemias, host range, and growth rate in cell culture. To correlate these differences with specific sequence differences between the two viral genomes, the genome RNA of transforming subgroup E recombinants between the Prague strain of Rous sarcoma virus, subgroup B (Pr-RSV-B), and the endogenous Rous-associated virus-0 (RAV-0), Subgroup E, and seven nontransforming subgroup E recombinants between the transformation-defective mutant of Pr-RSV-B and RAV-0 was examined by oligonucleotide fingerprinting. The pattern of inheritance among the recombinant viruses of regions of the genome in which Pr-RSV-B and RAV-0 differ allowed us to draw the following conclusions. (i) Nonselected parts of the genome were, with a few exceptions, inherited by the recombinant virus progeny randomly from either parent, with no obvious linkage between neighboring sequences. (ii) A small region in the Pr-RSV-B genome which maps in the 5' region was found in all transforming but only some of the nontransforming recombinants, suggesting that it plays a role in the control of the expression of transformation. (iii) A region of the Pr-RSV-B genome which maps between env and src was similarly linked to the src gene and may be either part of the structural gene for src or a control sequence regulating the expression of src. (iv) The C region at the extreme 3' end of the virus genome which is closely related in all the exogenous avian retroviruses but distinctly different in the endogenous viruses is the major determinant responsible for the differences in growth rate between RAV-0 and Pr-RSV-B. This latter observation allowed us to redefine the C region as a genetic locus, c, with two alleles cn (in RAV-0) and cx (in exogenous viruses).  相似文献   

9.
We have compared the polypeptide products of the src gene of several strains of Rous sarcoma virus produced by in vitro translation of heat-denatured 70S virion RNA in the nuclease-treated reticulocyte lysate with those present in chick cells transformed by these viruses. We have done this by immunoprecipitation, using sera from rabbits injected at birth with Schmidt-Ruppin Rous sarcoma virus. In vitro translation results in the synthesis of at least nine polypeptides which appear to be encoded by the src gene. These range in size from 17,000 to 60,000 daltons. The sera from tumor-bearing rabbits precipitated these polypeptides arising from the in vitro translation of RNA from Schmidt-Ruppin Rous sarcoma virus of both subgroup A and subgroup D and from one stock of Prague Rous sarcoma virus of subgroup C. In each case, all of this family of related polypeptides could be precipitated except the smallest, the 17,000-dalton polypeptide. No precipitation of analogous polypeptides resulting from the translation of RNA from other strains of Rous sarcoma virus was observed. Cells transformed by these three strains of Rous sarcoma virus contain easily detectable amounts of a polypeptide, p60src, essentially identical to the 60,000-dalton in vitro product. With one exception, they do not contain significant amounts of polypeptides analogous to the smaller in vitro products which can be precipitated by these sera. Cells transformed by one stock of Schmidt-Ruppin Rous sarcoma virus of subgroup A did contain a 39,000-dalton polypeptide, which was related, by peptide mapping, to the 60,000-dalton polypeptide and was similar in size to a precipitable in vitro product. The 60,000-dalton polypeptide present in transformed cells appeared to be phosphorylated 10 to 25 min after its synthesis, metabolically very stable, and not derived from a precursor polypeptide. All immunoprecipitates from transformed cells which contained p60src also contained an 80,000-dalton phosphoprotein. This polypeptide is unrelated to p60src, as determined by peptide mapping, and may well be a host cell polypeptide which is specifically associated with p60src.  相似文献   

10.
Specificity of avian leukosis virus-induced hyperlipidemia   总被引:2,自引:0,他引:2       下载免费PDF全文
Rous-associated virus 7 (RAV-7) is a subgroup C avian leukosis virus which does not transform cells in vitro or carry an oncogene. When injected into 1-day-old hatched chicks, RAV-7 causes a low incidence of lymphoid leukosis after a latent period of several months. In contrast, infection of 10-day-old chicken embryos with RAV-7 leads to a disease syndrome characterized by stunting, obesity, atrophy of the bursa and the thymus, high triglyceride and cholesterol levels, reduced thyroxine levels, and increased insulin levels (Carter et al., Infect. Immun. 39:410-422, 1983; J.K. Carter and R.E. Smith, Infect. Immun. 40:795-805, 1983). Histopathological examination of tissues from affected chicks revealed an accumulation of lipid in the liver and an extensive infiltration of the thyroid and pancreas by lymphoblastoid cells. In the present investigation, the subgroup specificity of this syndrome was investigated. Other subgroup C avian leukosis viruses (transformation-defective B77, transformation-defective Prague C strain of Rous sarcoma virus, and RAV-49) caused stunting, infiltration of the thyroid and pancreas, increased liver weights, decreased thyroxine levels, and increased insulin levels, but they did not cause a uniform, profound increase in triglyceride and cholesterol levels. Avian leukosis viruses of subgroup A [myeloblastosis-associated virus 1 causing osteopetrosis [MAV-1(O)] and RAV-1], subgroup B [MAV-2(O), MAV-2 causing nephroblastoma [MAV-2(N)], and RAV-2], subgroup D (RAV-50), and subgroup F (ring-necked pheasant virus and RAV-61) did not cause a syndrome identical to that induced by RAV-7. All of the viruses examined induced some stunting and a reduction in thyroxine levels which correlated with the stunting. The two subgroup F viruses caused an infiltration of the thyroid which may have been secondary to severe lung involvement. We conclude that the RAV-7 syndrome is unique, particularly in the induction of a hyperlipidemia.  相似文献   

11.
Stocks of cloned helper-independent Rous sarcoma virus (RSV) spontaneously segregate transformation-defective (td) mutants that appear to have an RNA genome composed of smaller subunits than those of the patent virus. Differential hybridization and competitive hybridization techniques involving reactions between viral RNA and proviral sequences in host cell DNA (under conditions of initial DNA excess) were used to measure the extent of the deletion in a td mutant of Prague strain (Pr) of RSV (Pr RSV-C). Viral 60 to 70S RNA sequences labeled to 1 to 5 x 10(7) counts per min per mug with (125)I were characterized with respect to their properties in hybridization reactions and used to reinforce data obtained with [(3)H]RNA of lower specific activity. By these techniques, about 13% +/- 3% of the sequences Pr RSV-C that formed hybrids with DNA from virus-induced sarcomas appeared to be deleted from the genome of td Pr RSV-C. Studies comparing hybridization of RNA from Pr RSV-C and td Pr RSV-C with RSV-related sequences in normal cells, and competition experiments with RNA from the endogenous chicken oncornavirus Rous-associated virus type 0 (RAV-0) provided evidence that the majority, if not all, of the RNA sequences of Pr RSV-C deleted from its transformation-defective mutant are not represented in normal chicken DNA. Competition studies with a leukosis virus, RAV-7, indicated this virus also lacks a genome segment of about the same size as the deletion in the td mutant. Finally, the genome of all three "exogenous" viruses was found to lack a small segment (about 12%) of sequences present in the endogenous provirus of RAV-O.  相似文献   

12.
Molecular basis of host range variation in avian retroviruses.   总被引:28,自引:21,他引:7       下载免费PDF全文
Previous genetic analysis has localized the region of the Rous sarcoma virus (RSV) env gene responsible for host range specificity to that encoding the middle one-third of gp85. To better understand the host range determinants, the relevant regions of the genomes of infectious molecular clones of the transformation-defective Prague strain of RSV, subgroup B (Pr-RSV-B) and Rous-associated virus 0 (RAV-0) (subgroup E) were sequenced and compared with the sequence of Pr-RSV-C. This comparative analysis identified two variable regions of low amino acid sequence homology flanked by highly conserved amino acid sequences. The first variable region (hr1) begins at base 5654 in the Pr-RSV-C sequence and encodes 32 amino acids. The second variable region (hr2) begins at base 5846 and encodes 27 amino acids. To test the role of the variable regions in host range specificity, we determined the sequence of this region of the env gene of NTRE-4, a recombinant virus between Pr-RSV-B and RAV-0 which exhibits an extended host range. This analysis revealed that the recombinant subgroup-encoding region of NTRE-4 is composed of 200 bases of RAV-0 sequence, including hr2, flanked by sequences which are otherwise of Pr-RSV-B origin. This study indicates that hr1 and hr2 are the domains of gp85 responsible for host range determination in avian retroviruses.  相似文献   

13.
Recombinant murine retroviruses containing the src gene of the avian retrovirus Rous sarcoma virus were isolated. Such viruses were isolated from cells after transfection with DNAs in which the src gene was inserted into the genome of the amphotropic murine retrovirus 4070A. The isolated viruses had functional gag and pol genes, but they were all env defective since the src gene was inserted in the middle of the env gene coding region. Infectious transforming virus could be isolated only from cells transfected with DNA constructions in which the src gene was in the same polarity as that of a long terminal repeat of the amphotropic viral genome. These recombinant viruses encoded a pp60src protein with a molecular weight similar to that of the Schmidt-Ruppin strain of Rous sarcoma virus. In addition, the src protein(s) of these recombinant viruses was as active as protein kinases in the immune complex protein kinase assay. Intravenous injection of helper-independent Moloney and Friend murine leukemia virus pseudotypes of the src recombinant viruses into 6-week-old NIH Swiss mice resulted in the appearance of splenic foci within 2 weeks, splenomegaly and, later after infection (8 to 10 weeks), anemia. Infectious transforming virus could be recovered from the spleens of diseased animals. Such viruses encoded pp60src but not p21ras or mink cell focus-forming virus-related glycoproteins.  相似文献   

14.
Chickens susceptible to infection with subgroup E viruses were inoculated with four independent isolates of Rous-associated virus type 60 (RAV-60) that are subgroup e recombinants of endogenous and exogenous virus. Neoplasms developed in each inoculated group. Therefore, nontransforming viruses of subgroup E can induce lymphoid leukosis at a moderate rate compared with RAV-0, a subgroup E endogenous virus, suggesting that oncogenicity is not a viral envelope (env)-related characteristic. Since the common (c) regions of the RAV-60s examined were of exogenous origin, we suggest that the c region rather than env is important for a high rate of induction of lymphoid leukosis and related neoplasms.  相似文献   

15.
We have identified p10 as a fifth gag protein of avian sarcoma and leukemia viruses. Amino-terminal protein sequencing of this polypeptide purified from the Prague C strain of Rous sarcoma virus and from avian myeloblastosis virus implies that it is encoded within a stretch of 64 amino acid residues between p19 and p27 on the gag precursor polypeptide. For p10 from the Prague C strain of Rous sarcoma virus the first 30 residues were found to be identical with the predicted amino acid sequence from the Prague C strain of Rous sarcoma virus DNA sequence, whereas for p10 from avian myeloblastosis virus the protein sequence for the same region showed two amino acid substitutions. Amino acid composition data indicate that there are no gross composition changes beyond the region sequenced. The amino terminus of p10 is located two amino acid residues past the carboxy terminus of p19, whereas its carboxy terminus probably is located immediately adjacent to the first amino acid residue of p27.  相似文献   

16.
Adsorption and penetration of retroviruses into eucaryotic cells is mediated by retroviral envelope glycoproteins interacting with host receptors. Recombinant avian leukosis viruses (ALVs) differing only in envelope determinants that interact with host receptors for subgroup A or E ALVs have been found to have unexpectedly distinctive patterns of tissue-specific replication. Recombinants of both subgroups were highly expressed in bursal lymphocytes as well as in cultured chicken embryo fibroblasts. In contrast, the subgroup A but not subgroup E host range allowed high levels of expression in skeletal muscle, while subgroup E but not subgroup A envelope glycoproteins permitted efficient replication in the thymus. A subgroup B virus (RAV-2), like the subgroup E viruses, demonstrated a distinct bursal and thymic tropism, further supporting the theory that genes encoding receptors for subgroup B and E viruses are allelic. The source of long terminal repeats (LTRs) or adjacent sequences also influenced tissue-specific replication, with the LTRs from endogenous virus RAV-0 supporting efficient replication in the bursa and thymus but not in skeletal muscle. These results indicate that ALV env and LTR regions are responsible for unexpectedly distinctive tissue tropisms.  相似文献   

17.
Polymorphism of avian sarcoma virus src proteins.   总被引:4,自引:2,他引:2       下载免费PDF全文
The src gene products of seven different avian sarcoma viruses were compared. In vitro translation of virion RNA yielded products identified unambiguously as p60src in the case of two stocks of the Schmidt-Ruppin strain, three stocks of the Prague strain, the Bryan strain, and the Bratislava 77 strain of avian sarcoma virus. Differences in the electrophoretic mobility of these seven p60src proteins in sodium dodecyl sulfate-polyacrylamide gels, corresponding to variation in the apparent molecular weights ranging from 56,000 to 60,500, were observed. Antigenic variability was also found; only three of the seven viruses tested encoded a p60src, which was precipitated by antisera derived from rabbits bearing tumors induced by the Schmidt-Ruppin strain of Rous sarcoma virus. Examination of the methionine-containing tryptic peptides of the seven ;60src proteins by two-dimensional mapping revealed four common peptides but marked variability in the five to eight other peptides in each protein. Clear differences in the peptide maps of p60src were observed, both between different strains of virus and within strains. In the three cases examined, p60src synthesized in transformed cells was found to be essentially identical to that synthesized in vitro. We conclude that there is significant polymorphism in the p60src proteins of the avian sarcoma viruses.  相似文献   

18.
Recombinant avian leukosis viruses have been constructed from the molecularly cloned DNAs of Rous-associated virus type 1 (RAV-1) and Rous-associated virus type 0(RAV-0). Virus encoded by the cloned RAV-1 DNA induced a high incidence of B-cell lymphoma and a moderate incidence of a variety of other neoplasms. Virus encoded by the cloned RAV-0 DNA did not cause disease. Virus recovered from DNA constructions that encoded the gag, pol, and 5' env sequences of RAV-0 and the 3' env and long terminal repeat sequences of RAV-1 did not cause a high incidence of lymphoma. Rather, these constructed viruses induced a low incidence of a variety of neoplasms. Virus recovered from reconstructed pRAV-1 DNA had the same disease potential as did virus recovered from the parental pRAV-1 DNA. These results indicate that the long terminal repeat sequences of RAV-1 do not confer the potential to induce a high incidence of B-cell lymphoma.  相似文献   

19.
Two subgroup F avian leukosis viruses, ring-necked pheasant virus (RPV) and RAV-61, were previously shown to induce a high incidence of a fatal proliferative disorder in the lungs of infected chickens. These lung lesions, termed angiosarcomas, appear rapidly (4 to 5 weeks after infection), show no evidence of proto-oncogene activation by proviral integration, and are not induced by avian leukosis viruses belonging to other subgroups. To identify the viral sequences responsible for induction of these tumors, we constructed recombinant viruses by exchanging genomic segments of molecularly cloned RPV with those of a subgroup A leukosis virus, UR2AV. The ability to induce rapid lung tumors segregated only with the env sequences of RPV; the long terminal repeat of RPV was not required. However, recombinants carrying both env and long terminal repeat sequences of RPV induced lung tumors with a shorter latency. In several cases, recombinant viruses exhibited pathogenic properties differing from those of either parental virus. Recombinants carrying the gag-pol region of RPV and the env gene of UR2AV induced a high incidence of a muscle lesion termed infiltrative intramuscular fibromatosis. One recombinant, EU-8, which carries the gag-pol and LTR sequences of RPV, and the env gene of UR2AV, induced lymphoid leukosis after an unusually short latent period. The median time of death from lymphoid leukosis was 6 to 7 weeks after infection with EU-8 compared with approximately 5 months for UR2AV.  相似文献   

20.
A 96,000-dalton glycoprotein, p(96), was present in cell extracts obtained from gs-chf- chicken embryo fibroblasts infected with the avian RNA tumor viruses Rous-associated virus-2 subgroup B (RAV-2) and the Schmidt-Ruppin strain of Rous sarcoma virus subgroup A (SR-RSV-A), as well as from uninfected gsLchf+ (HE) cell extracts. It was not found in cell extracts from uninfected gs-chf- or gs+chf+ (HH) cells, nor from gs-chf- cells infected with envelope-deficient Bryan high-titer Rous sarcoma virus. Immunoprecipitation, kinetic, and biochemical data indicate the this polyprotein contains information that gives rise to the major virion glycoprotein gp85. A second polyprotein of 80,000 daltons, p/80), is also present in the RAV-2- and SR-RSV-A-infected gs-chf- cells. This second polyprotein contains less carbohydrate than p(96), and kinetic and biochemical data indicate that p(80) may be an immature form of p(96).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号