首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Food deprivation (FD) increases hypothalamic neuropeptide Y (NPY) and agouti-related protein (AGRP) mRNA levels and decreases proopiomelanocortin (POMC) mRNA levels; refeeding restores these levels. We determined the time course of changes in hypothalamic NPY, AGRP, and POMC mRNA levels on refeeding after 24 h FD in C57BL mice by in situ hybridization. After 24 h deprivation, mice were refed with either chow or a palatable mash containing no calories or were injected with murine leptin (100 microg) without food. Mice were perfused 2 or 6 h after treatment. Food deprivation increased hypothalamic NPY mRNA (108 +/- 6%) and AGRP mRNA (78 +/- 7%) and decreased hypothalamic POMC mRNA (-15 +/- 1%). Refeeding for 6 h, but not 2 h, was sufficient to reduce (but not restore) NPY mRNA, did not affect AGRP mRNA, and restored POMC mRNA levels to ad libitum control levels. Intake of the noncaloric mash had no effect on mRNA levels, and leptin administration after deprivation (at a dose sufficient to reduce refeeding in FD mice) was not sufficient to affect mRNA levels. These results suggest that gradual postabsorptive events subsequent to refeeding are required for the restoration of peptide mRNA to baseline levels after food deprivation in mice.  相似文献   

2.
Agouti-related protein (AGRP) and neuropeptide Y (NPY) are synthesized in the same neurons in the hypothalamic arcuate nucleus. We have previously shown that NPY/AGRP neurons contain growth hormone (GH) receptor mRNA, and are activated following systemic GH administration. We also reported that NPY inhibits GH secretion when administered centrally. In this study, we have examined the effect of AGRP on GH secretion. Central administration of AGRP (83-132) as a single injection of 1 or 10 microg/rat, or chronic treatment of 1 microg/rat, every 12 h for 7 days, did not alter the GH secretory pattern of adult male rats. AGRP (83-132) at doses of 1-100 nM (4 h) did not alter baseline- and GHRH-induced GH secretion from the rat pituitary cell cultures. These results suggest that AGRP does not play a significant role in the feedback regulation of the GH secretion.  相似文献   

3.
The gastrointestinal peptide hormone ghrelin stimulates appetite in rodents and humans via hypothalamic actions. We discovered expression of ghrelin in a previously uncharacterized group of neurons adjacent to the third ventricle between the dorsal, ventral, paraventricular, and arcuate hypothalamic nuclei. These neurons send efferents onto key hypothalamic circuits, including those producing neuropeptide Y (NPY), Agouti-related protein (AGRP), proopiomelanocortin (POMC) products, and corticotropin-releasing hormone (CRH). Within the hypothalamus, ghrelin bound mostly on presynaptic terminals of NPY neurons. Using electrophysiological recordings, we found that ghrelin stimulated the activity of arcuate NPY neurons and mimicked the effect of NPY in the paraventricular nucleus of the hypothalamus (PVH). We propose that at these sites, release of ghrelin may stimulate the release of orexigenic peptides and neurotransmitters, thus representing a novel regulatory circuit controlling energy homeostasis.  相似文献   

4.
Agouti-related protein is a mediator of diabetic hyperphagia   总被引:2,自引:0,他引:2  
Qu SY  Yang YK  Li JY  Zeng Q  Gantz I 《Regulatory peptides》2001,98(1-2):69-75
To explore the role of agouti-related protein (AGRP) in diabetic hyperphagia changes in hypothalamic AGRP mRNA levels were examined in diabetic rats. Rats rendered diabetic by streptozotocin displayed marked hyperglycemia (blood glucose 456.0+/-8.4 mg/dl versus 71.8+/-1.9 mg/dl) and hyperphagia (36.9+/-1.0 g/day versus 22.0+/-0.4 g/day), that was associated with a 286.6+/-4.4% increase in hypothalamic AGRP mRNA and a 178.9+/-13.5% increase in hypothalamic NPY mRNA. Insulin treatment of diabetic rats partially corrected blood glucose (147.4+/-13.1 mg/dl) and ameliorated hyperphagia (26.6+/-2.0 g/day). Insulin replacement was also associated with a return of hypothalamic AGRP mRNA (111.7+/-8.3% of controls) and NPY mRNA (125.0+/-8.9% of controls) from the elevated levels that were observed in untreated diabetic rats. In contrast to insulin treated rats, sodium orthovanadate treated diabetic rats remained significantly hyperglycemic (361.5+/-12.5 mg/dl). However, despite their persistent hyperglycemia, orthovanadate treated diabetic rats were still observed to have a significant reduction of hypothalamic AGRP mRNA (138.7+/-11.4%) and NPY mRNA (129.9+/-9.8%). Simultaneous measurement of serum leptin revealed suppressed levels in both untreated diabetic (0.5+/-0.1 ng/ml) and sodium orthovanadate treated rats (0.5+/-0.1 ng/ml) compared to non-diabetic controls (2.1+/-0.1 ng/ml). These data indicate that AGRP is a mediator of diabetic hyperhpagia and suggest that insulin can directly influence hypothalamic AGRP and NPY mRNA expression.  相似文献   

5.
6.
A major paradigm in the field of obesity research is the existence of an adipose tissue-brain endocrine axis for the regulation of body weight. Leptin, the peptide mediator of this axis, is secreted by adipose cells. It lowers food intake and body weight by acting in the hypothalamus, a region expressing an abundance of leptin receptors and a variety of neuropeptides that influence food intake and energy balance. Among the most promising candidates for leptin-sensitive cells in the hypothalamus are arcuate nucleus neurons that co-express the anabolic neuropeptides, neuropeptide Y (NPY) and agouti-related peptide (AGRP), and those that express proopiomelanocortin (POMC), the precursor of the catabolic peptide, alphaMSH. These cell types contain mRNA encoding leptin receptors and show changes in neuropeptide gene expression in response to changes in food intake and circulating leptin levels. Decreased leptin signaling in the arcuate nucleus is hypothesized to increase the expression of NPY and AGRP. Levels of leptin receptor mRNA and leptin binding are increased in the arcuate nucleus during fasting, principally in NPY/AGRP neurons. These findings suggest that changes in leptin receptor expression in the arcuate nucleus are inversely associated with changes in leptin signaling, and that the arcuate nucleus is an important target of leptin action in the brain.  相似文献   

7.
pRb is frequently inactivated in tumours by mutations or phosphorylation. Here, we investigated whether pRb plays a role in obesity. The Arcuate nucleus (ARC) in hypothalamus contains antagonizing POMC and AGRP/NPY neurons for negative and positive energy balance, respectively. Various aspects of ARC neurons are affected in high‐fat diet (HFD)‐induced obesity mouse model. Using this model, we show that HFD, as well as pharmacological activation of AMPK, induces pRb phosphorylation and E2F target gene de‐repression in ARC neurons. Some affected neurons express POMC; and deleting Rb1 in POMC neurons induces E2F target gene de‐repression, cell‐cycle re‐entry, apoptosis, and a hyperphagia‐obesity‐diabetes syndrome. These defects can be corrected by combined deletion of E2f1. In contrast, deleting Rb1 in the antagonizing AGRP/NPY neurons shows no effects. Thus, pRb‐E2F1 is an obesity suppression mechanism in ARC POMC neurons and HFD‐AMPK inhibits this mechanism by phosphorylating pRb in this location.  相似文献   

8.
To better understand the involvement of hindbrain catecholamine neurons in hypovolemia-induced secretion of AVP, we injected antidopamine beta-hydroxylase saporin (DSAP) or unconjugated saporin (SAP) control solution into the hypothalamic paraventricular nucleus (PVH) of anesthetized rats to retrogradely lesion catecholamine neurons innervating magnocellular areas of the hypothalamus. Subsequently, hypotensive hypovolemia was induced by remote blood withdrawal (4.5 ml, 1 ml/min) using an intra-atrial catheter. Blood was sampled at 2, 5, 20, and 50 min after onset of blood withdrawal. The AVP response was severely impaired by DSAP. Peak responses at 50 min were 51 pg/ml in SAP control and 17 pg/ml in DSAP-lesioned rats, indicating the importance of catecholamine neurons for this response. We also measured AVP responses to osmotic challenge induced by administration of hypertonic saline (1 M, 15 ml/kg, sc) and to insulin-induced hypoglycemia. Osmotic challenge increased AVP levels, but the response was not impaired by DSAP, indicating that AVP neurons were not damaged by the DSAP injection. Insulin-induced hypoglycemia did not increase AVP levels in either DSAP- or SAP-treated rats. However, the same dose of insulin increased food intake and corticosterone secretion in SAP controls, and these responses were profoundly impaired by DSAP. Thus catecholamine neurons are required for both the AVP response to hypotensive hypovolemia and for feeding and corticosterone responses to hypoglycemia. Lack of an AVP response to insulin-induced hypoglycemia in intact rats therefore indicates that responses to hypovolemia and hypoglycemia are mediated by different catecholamine neurons under distinct sensory controls.  相似文献   

9.
10.
Neuronal plasticity during the critical postnatal period of development seems to promote a change in the function of the hypothalamic regulatory system of body weight. Rats raised in small litters (SL) of only three pups per mother compared to ten or twelve in control litters (CL) gain significantly more weight than normal rats till weaning and are overweight also in later life. These rats are known to express hyperleptinemia, hyperglycemia and hyperinsulinemia. The review summarizes the results of action of leptin and insulin as well as of several feeding-relevant neuropeptides on neuronal activity of hypothalamic regulatory centres in overweight SL rats compared to controls. The study was performed on brain slices perfused with solution containing 10 mM glucose. Whereas a normally inhibitory action of leptin and insulin on medial arcuate neurons (ArcM) is reduced in SL rats and partly replaced by activation, the normally activating effect of these hormones on ventromedial (VMH) neurons is altered to predominant inhibition. Inhibition of ArcM neurons may decrease the release of the orexigenic neuropeptide Y (NPY) and agouti gene-related protein (AGRP). Thus, the negative feedback by leptin and insulin on food intake is replaced by diminished response and partly positive feedback processes in SL rats. The action of NPY and AGRP as well as of the orexigenic melanin-concentrating hormone on paraventricular (PVH) and VMH neurons is also shaped from activation or bimodal effects to predominant inhibition. Such inhibition of PVH and VMH might lead to reduced energy expenditure in small litter rats. Also the anorexigenic melanocortin alpha-MSH seems to contribute into increased energy storage. These altered responses of hypothalamic neurons in overweight small litter rats might reflect a general mechanism of neurochemical plasticity and "malprogramming" of hypothalamic neuropeptidergic systems leading to a permanently altered regulatory function.  相似文献   

11.
12.
Energy stores are held relatively constant in many mammals. The circuitry necessary for maintaining energy homeostasis should (1) sense the amount of energy stored in adipose tissue, (2) sense and integrate the multiple opposing signals regarding nutritional state, and (3) provide output regulating energy intake and expenditure to maintain energy homeostasis. We demonstrate that individual neurons within the paraventricular nucleus of the hypothalamus (PVH) are capable of detection and integration of orexigenic (neuropeptide Y [NPY]) and anorexigenic (melanocortin) signals, that NPY and melanocortins are functional antagonists of each other within the PVH in the regulation of feeding behavior, and that melanocortin administration within the PVH regulates both feeding behavior and energy expenditure. These data provide a cellular basis for the adipostat within neurons in the PVH that appear to be jointly regulated by NPY- and melanocortin-responsive neurons.  相似文献   

13.
In view of the recent demonstrations that Neuropeptide Y (NPY) and adrenergic transmitters coexist in neurons of the rat brain, we have compared the effects of intraventricular (Ivt) injections of NPY and catecholamines on LH release and food intake in intact male rats. Of the three catecholamines, dopamine (DA), norepinephrine (NE) and epinephrine (E), only E (5.3 micrograms or 15.9 micrograms/rat) significantly stimulated LH release, although NE and E (5.3 micrograms/rat) were equally effective in eliciting food intake in satiated rats. Ivt administration of 10 micrograms NPY significantly stimulated LH release, whereas either lower (0.5 or 2 micrograms/rat) or higher (25 micrograms/rat) doses were ineffective. In contrast, NPY at doses of 0.5 - 10 micrograms/rat increased cumulative food intake in a dose-related fashion. These findings present preliminary evidence of the physiological correlates of the neuronal coexistence of adrenergic transmitters and NPY in the brain and raise the possibility that NPY may normally act either independently, in concert with or via adrenergic systems to evoke LH release and feeding responses in the rat.  相似文献   

14.
Summary 1. The pulsatile release of luteinizing hormone-releasing hormone (LHRH) is critical for reproductive function. However, the exact mechanism of LHRH pulse generation is unclear. The purpose of this article is to review the current knowledge on LHRH pulse generation and to discuss a series of studies in our laboratory.2. Using push-pull perfusion in the stalk-median eminence of the rhesus monkey several important facts have been revealed. There is evidence indicating that LHRH neurons themselves have endogenous pulse-generating mechanisms but that the pulsatility of LHRH release is also modulated by input from neuropeptide Y (NPY) and norepinephrine (NE) neurons. The release of NPY and NE is pulsatile, with their pulses preceding or occurring simultaneously with LHRH pulses, and the neuroligands NPY and NE and their agonists stimulate LHRH pulses, while the antagonists of the ligands suppress LHRH pulses.3. The pulsatile release of LHRH increases during the estrogen-induced LH surge as well as the progesterone-induced LH surge. These increases are partly due to the stimulatory effects of estrogen and progesterone on NPY neurons.4. An increase in pulsatile LHRH release occurs at the onset of puberty. This pubertal increase in LHRH release appears to be due to the removal of tonic inhibition from aminobutyric acid (GABA) neurons and a subsequent increase in the inputs of NPY and NE neurons to LHRH neurons.5. There are indications that additional neuromodulators are involved in the control of the LHRH pulse generation and that glia may play a role in coordinating pulses of the release of LHRH and neuromodulators.6. It is concluded that the mechanism generating LHRH pulses appears to comprise highly complex cellular elements in the hypothalamus. The study of neuronal and nonneuronal elements of LHRH pulse generation may serve as a model to study the oscillatory behavior of neurosecretion.  相似文献   

15.
The aim of the current study was to gain further insight into the implication of leptin in the regulation of hypothalamic gene expression during long-term food deprivation with emphasis on phase 3 of fasting (P3, late protein breakdown). Among plasma parameters, glucose, non-esterified fatty acids, and insulin levels tended to be decreased by leptin infusion, whilst corticosterone levels remained unchanged. From Northern blot analysis, NPY, AGRP, and MCH mRNA gene expressions were differentially regulated during prolonged fasting in leptin-perfused rats. In comparison with fed animals, NPY, AGRP, and MCH mRNA levels in P3 rats treated with leptin either remained stable or increased slightly. Regarding anorexigenic peptides (CART and POMC) and prepro-OX, fasting with leptin induced only slight changes in gene expression. Similar data have been obtained in leptin-treated fasted rats at various doses within the physiological range. We conclude that leptin and particularly low levels of plasma leptin can reasonably be considered as a constituent of a signal triggering the fasting-induced enhanced drive for refeeding in P3.  相似文献   

16.
17.
18.
Noradrenergic and GABAergic systems in the medial hypothalamus influence plasma glucose and may be activated during glucoprivation. Microdialysis probes were placed into the ventromedial nucleus (VMH), lateral hypothalamus (LHA), and paraventricular nucleus (PVH) of male Sprague-Dawley rats to monitor extracellular concentrations of norepinephrine (NE) and GABA. During systemic hypoglycemia, induced by insulin (1.0 U/kg), NE concentrations increased in the VMH (P < 0.05) and PVH (P = 0.06) in a bimodal fashion during the first 10 min and 20-30 min after insulin administration. In the VMH, GABA concentrations increased (P < 0.05) in a similar manner as NE. Extracellular NE concentrations in the LHA were slightly lower (P = 0.13), and GABA levels remained at baseline. The increases in NE and GABA in the VMH were absent during euglycemic clamp; however, NE in the PVH still increased, reflecting a direct response to hyperinsulinemia. On the basis of these data, we propose that the activity of noradrenergic afferents to the medial hypothalamus is increased during hypoglycemia and influences the activity of local GABAergic systems to activate appropriate physiological compensatory mechanisms.  相似文献   

19.
Ghrelin stimulates food intake in part by activating hypothalamic neuropeptide Y (NPY) neurons/agouti related peptide (AGRP) neurons. We investigated the role of AGRP/melanocortin signaling in ghrelin-induced food intake by studying melanocortin 3 and 4 receptor knockout (MC3R KO and MC4R KO) mice. We also determined whether reduced ghrelin levels and/or an altered sensitivity to the GH-stimulating effects of ghrelin accompany the obesity syndromes of MC3R KO and MC4R KO mice. Compared to wild-type (WT) mice, the effects of ghrelin on food intake were reduced in MC3R KO and MC4R KO mice and circulating ghrelin levels were reduced in female MC4R KO mice. Female MC3R KO and MC4R KO mice exhibited a diminished responsiveness to the GH-releasing effects of ghrelin. Thus, deletion of the MC3R or MC4R results in a decreased sensitivity to ghrelin and verifies the involvement in the melanocortin system in ghrelin-induced food intake.  相似文献   

20.
Using high-performance liquid chromatography techniques with fluorescence and electrochemical detection, we found that beta-nicotinamide adenine dinucleotide (beta-NAD) is released in response to electrical field stimulation (4-16 Hz, 0.3 ms, 15 V, 120 s) along with ATP and norepinephrine (NE) in the canine isolated mesenteric arteries. The release of beta-NAD increases with number of pulses/stimulation frequencies. Immunohistochemistry analysis showed dense distribution of tyrosine hydroxylase-like immunoreactivity (TH-LI) and sparse distribution of TH-LI-negative nerve processes, suggesting that these blood vessels are primarily under sympathetic nervous system control with some contribution of other (e.g., sensory) neurons. Exogenous NE (3 micromol/l), alpha,beta-methylene ATP (1 micromol/l), neuropeptide Y (NPY, 0.1 micromol/l), CGRP (0.1 micromol/l), vasoactive intestinal peptide (VIP, 0.1 micromol/l), and substance P (SP, 0.1 micromol/l) had no effect on the basal release of beta-NAD, suggesting that the overflow of beta-NAD is evoked by neither the sympathetic neurotransmitters NE, ATP, and NPY, nor the neuropeptides CGRP, VIP, and SP. Botulinum neurotoxin A (BoNTA, 0.1 micromol/l) abolished the evoked release of NE, ATP, and beta-NAD at 4 Hz, suggesting that at low levels of neural activity, release of these neurotransmitters results from N-ethylmaleimide-sensitive factor attachment protein receptor/synaptosomal-associated protein of 25 kDa-mediated exocytosis. At 16 Hz, however, the evoked release of NE, ATP, and beta-NAD was reduced by BoNTA by approximately 90, 60, and 80%, respectively, suggesting that at higher levels of neural activity, beta-NAD is likely to be released from different populations of synaptic vesicles or different populations of nerve terminals (i.e., sympathetic and sensory terminals).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号