首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Influence of histone H1 on chromatin structure   总被引:31,自引:0,他引:31  
F Thoma  T Koller 《Cell》1977,12(1):101-107
Removal of histone H1 produces a transition in the structure of chromatin fibers as observed by electron microscopy. Chromatin containing all histone proteins appears as fibers with a diameter of about 250 A. The nucleosomes within these fibers are closely packed. If histone H1 is selectively removed with 50-100 mM NaCl in 50 mM sodium phosphate buffer (pH 7.0) in the presence of the ion-exchange resin AG 50 W - X2, chromatin appears as "beads-on-a-string" with the nucleosomes separated from each other by distances of about 150-200 A. If chromatin is treated in the presence of the resin with NaCl at concentrations of 650 mM or more, the structural organization of the chromatin is decreased, yielding fibers of irregular appearance.  相似文献   

2.
Protein phi 0 is a unique protein which is present in the sperm of the sea cucumber, Holothuria tubulosa. It associates with histones, but its physiological role is unknown. From its amino acid composition and sequence, protein phi 0 can be considered as an H1-related protein. In this paper, we have studied its interaction with chicken erythrocyte chromatin particles of different complexity, from core particles to polynucleosomes. Addition of protein phi 0 results in marked chromatin insolubilization. The higher the molecular weight of the chromatin fragment, the lower is the phi 0/nucleosome molar ratio at which precipitation occurs, so that complete insolubilization of polynucleosomes is achieved at a phi 0/nucleosome molar ratio which is identical to that found in mature H. tubulosa spermatozoa. We have also found that the interaction of protein phi 0 with chromatin is cooperative. These findings contribute to clarification of the peculiar physico-chemical properties shown by H. tubulosa sperm chromatin and the role played by the phi 0 protein.  相似文献   

3.
The distribution of histone H1 subfractions in chromatin subunits.   总被引:3,自引:2,他引:3       下载免费PDF全文
Rat liver chromatin was digested with micrococcal nuclease to various extents and fractionated into nucleosomes, di and trimers of nucleosomes on an isokinetic sucrose gradient. In conditions under which degradation of linker DNA within the particles was limited, the electrophoretic analysis of the histone content showed that the overall content of H1 histone increased from nucleosomes to higher order oligomers. Moreover, the histone H1 subfractions were found unevenly distributed among the chromatin subunits, one of them, H1--3 showing most variation. A more regular distribution of these subfractions was found in subunits obtained from a more extended digestion level of chromatin. It is suggested that the H1 subfractions differ in the protection they confer upon DNA.  相似文献   

4.
The importance of histone H1 heterogeneity and total H1 stoichiometry in chromatin has been enigmatic. Here we report a detailed characterization of the chromatin structure of cells overexpressing either H1(0) or H1c. Nucleosome spacing was found to change during cell cycle progression, and overexpression of either variant in exponentially growing cells results in a 15-base pair increase in nucleosome repeat length. H1 histones can also assemble on chromatin and influence nucleosome spacing in the absence of DNA replication. Overexpression of H1(0) and, to a lesser extent, H1c results in a decreased rate of digestion of chromatin by micrococcal nuclease. Using green fluorescent protein-tagged H1 variants, we show that micrococcal nuclease-resistant chromatin is specifically enriched in the H1(0) variant. Overexpression of H1(0) results in the appearance of a unique mononucleosome species of higher mobility on nucleoprotein gels. Domain switch mutagenesis revealed that either the N-terminal tail or the central globular domain of the H1(0) protein could independently give rise to this unique mononucleosome species. These results in part explain the differential effects of H1(0) and H1c in regulating chromatin structure and function.  相似文献   

5.
We have reconstituted salt-treated SV40 minichromosomes with differentially phosphorylated forms of histone H1 extracted from either G0-, S- or M-phase cells. Sedimentation studies revealed a clear difference between minichromosomes reconstituted with S-phase histone H1 compared with histone H1 from G0- or M-phase cells, indicating that the phosphorylation state of histone H1 has a direct effect on chromatin structure. Using reconstituted minichromosomes as substrate in the SV40 in vitro replication system, we measured a higher replication efficiency for SV40 minichromosomes reconstituted with S-phase histone H1 compared with G0- or M-phase histone H1. These data indicate that the chromatin structure induced by the phosphorylation of histone H1 influences the replication efficiency of SV40 minichromosomes in vitro.  相似文献   

6.
Bustin M  Catez F  Lim JH 《Molecular cell》2005,17(5):617-620
Over 80% of the nucleosomes in chromatin contain histone H1, a protein family known to affect the structure and activity of chromatin. Genetic studies and in vivo imaging experiments are changing the traditional view of H1 function and mechanism of action. H1 variants are partially redundant, mobile molecules that interact with nucleosomes as members of a dynamic protein network and serve as fine tuners of chromatin function.  相似文献   

7.
The role of histone H1 in the actual interactions bringing about chromatin folding is investigated by studying the reversibility of its dissociation. H1 was dissociated by increase of the NaCl concentration and reassociated by dialysis, without removal from the dialysis bag. To scrutinize the fidelity of this stoichiometric form of chromatin reconstitution, we use circular dichroism, nuclease digestion, thermal denaturation and the sensitive electric birefringence method. No alteration of the repeat length and no nucleosomal sliding are observed upon the reassociation procedure. However, under all the different conditions investigated, the original value of the positive electric birefringence is never recovered, indicating an irreversible change of structure. CD and melting profiles confirm that DNA-protein interactions are modified, and orientational relaxation time measurements indicate that these structural perturbations affect the salt-induced transition of polynucleosomal fibers. The striking conclusion of these studies is that variations of ionic concentration are sufficient to induce irreversible structural alterations affecting the higher-order folding of chromatin. It is of interest that the only sample which exhibits behavior upon reassociation comparable to that of native chromatin is the one which experienced the fastest salt transitions. We suggest that these conformational changes arise from the unbinding to DNA of certain basic tails of histone(s), and that a competition for DNA binding locations exists upon the reassociation. These results are then additional arguments (Mazen, A., Hacques, M.F. and Marion, C.,J. Mol. Biol. 194, 741-745 (1987)), to suggest that dissociation of H1 might modify a direct interaction between basic tails of core histones and H1.  相似文献   

8.
1. Histones H1 and H5 in chromatin and in free solution can be cross-linked to higher multimers. Is this due to a specific protein/protein interaction? If so, this interaction might be the structural basis of the condensation of the chromosomal nucleofilament, known to be mediated by histones H1 and H5. 2. Since only the central domain of H1 and H5 exhibits tertiary folding and globular structure, this is the most likely site of specific interaction. 3. Formaldehyde has been used to test whether the central domains of histone H1 from calf thymus or from sea urchin sperm or histone H5 from chicken erythrocytes self-interact. 4. The cross-linking shown by each globular peptide was compared with that of its parent histone. 5. In all three cases the peptide cross-linked to a much lower extent than its intact parent histone and the observed cross-linked rates were roughly in proportion to the relative number of lysine residues parent histone and peptide. 6. It is concluded that there is no specific self-interaction between the globular domains of either H1 or H5 molecules in free solution. 7. This result suggests that specific H1/H1 protein/protein interactions are not the basic cause of chromatin condensation.  相似文献   

9.
10.
The condensation of chromatin and histone H1-depleted chromatin by spermine   总被引:2,自引:0,他引:2  
At low ionic strength, spermine induces aggregation of native and H1-depleted chromatin at spermine/phosphate (Sp/P) ratios of 0.15 and 0.3, respectively. Physico-chemical methods (electric dichroism, circular dichroism and thermal denaturation) show that spermine, at Sp/P less than 0.15, does not appreciably alter the conformation of native chromatin and interacts unspecifically with all parts of chromatin DNA (linker as well as regions slightly or tightly bound to histones). In chromatin, the role of spermine could be more important in the stabilization of higher-order structure than in the condensation of the 30 nm solenoid. The addition of spermine to H1-depleted chromatin revealed two important features: (i) spermine can partially mimic the role of histone H1 in the condensation of chromatin; (ii) the core histone octamer does not appear to play any role in the aggregation process by spermine as DNA and H1-depleted chromatin aggregate at the same Sp/P ratio.  相似文献   

11.
Bovine thymus and trout testis chromatin were fractionated into regions which differed in their micrococcal nuclease accessibility and solubility properties, and the distribution of the ubiquitinated histone species among these chromatin regions was elucidated. Ubiquitinated (u) species of histones H2A and H2B were enriched in the nuclease-sensitive, low-ionic-strength, soluble fraction of both chromatins. These results indicate that the presence of ubiquitinated histones may alter nucleosome-nucleosome interactions and destabilize higher-order chromatin structures. Bovine thymus chromatin was separated into aggregation-resistant, salt-soluble and aggregation-prone, salt-insoluble chromatin fractions. The aggregation-resistant chromatin fraction depleted in H1 histones was enriched in uH2A and uH2B, with uH2B showing the greater enrichment. The chromatin fragments were also stripped and reconstituted with the H1 histones prior to fractionation. The results were the same as above: uH2A and uH2B were preferentially localized in the aggregation-resistant. H1-depleted chromatin fraction, suggesting that chromatin regions enriched in ubiquitinated histone species have a reduced affinity for the H1 histones. Thus, ubiquitinated histone species may be one of the contributing factors in the differential assembly of various parts of the genome.  相似文献   

12.
Chromatin-remodeling complexes have been a central area of focus for research dealing with accessing cellular DNA sequestered in chromatin. Although the linker histone H1 plays a major role in promoting and maintaining higher-order chromatin structure, it has been noticeably absent from assays utilizing chromatin-remodeling enzymes. This review focuses on two ATP-dependent chromatin-remodeling complexes, Drosophila ISWI and mammalian SWI/SNF, that have been assayed using chromatin templates containing histone H1.  相似文献   

13.
Mutual arrangement of histone H1 molecules in chromatin extended in low salt-EDTA buffer and additionally in the presence of urea was studied by means of reversible cross-linking combined with chymotryptic digestion. In the chromatins tested, the chymotryptic halves of H1 were cross-linked in all possible combinations; i.e., C-C, C-N and N-N. The results imply that the mutual arrangement of H1 histones is determined by the structure of extended nucleosomal chain, rather than chromatin superstructure.  相似文献   

14.
Electron microscopy shows that EDTA treatment or partial removal of histone HI converts 200-250 A chromatin fibres characteristic for native chromatin, isolated in low ionic strength conditions into fibres consisting of nucleosomes connected by segments of DNA. This structural transition is accompanied by an increase in the amplitude of positive band of CD spectra at 280 nm. Comparison of electron microscopic, thermal denaturation and electrophoretic data suggests that multiphasic character of melting curves, observed for chromatin, lacking histone HI is due to the removal of histone HI and destabilisation of the DNA segments, connecting nucleosomes. It is also shown that bivalent cations play an important part both in the stabilisation of 200 A globules and of nucleosomes.  相似文献   

15.
Reconstitution of the 30 nm filament of chromatin from pure histone H5 and chromatin depleted of H1 and H5 has been studied using small-angle neutron-scattering. We find that depleted, or stripped, chromatin is saturated by H5 at the same stoichiometry as that of linker histone in native chromatin. The structure and condensation behavior of fully reconstituted chromatin is indistinguishable from that of native chromatin. Both native and reconstituted chromatin condense continuously as a function of salt concentration, to reach a limiting structure that has a mass per unit length of 6.4 nucleosomes per 11 nm. Stripped chromatin at all ionic strengths appears to be a 10 nm filament, or a random coil of nucleosomes. In contrast, both native and reconstituted chromatin have a quite different structure, showing that H5 imposes a spatial correlation between neighboring nucleosomes even at low ionic strength. Our data also suggest that five to seven contiguous nucleosomes must have H5 bound in order to be able to form a higher-order structure.  相似文献   

16.
17.
Nucleosomal subunits isolated from rabbit thymus nuclei in 0.04 M K2SO4-0.02 M Tris, pH 7.4 were devoid of histone H1, while whole chromatin prepared in the same buffer contained the full complement of histone H1. The question is asked why histone H1 dissociates from the subunits but not from the high molecular weight material. We propose that, at physiological salt concentrations, histone H1 is not bound to linker DNA as depicted in the current models; rather, alternate attachment sites, present only in the polymer, are involved.  相似文献   

18.
The relative amount of H1 histone associated with isolated nucleosomes from calf thymus was determined as a function of the extent of DNA digestion by micrococcal nuclease. Generally the amount of H1 histone associated with mononucleosomes decreases with increasing digestion until 60% of the original H1 remains associated with DNA 150 base pirs or less in size. Coincidentally, H1 histone increases relative to the other histones in aggregated material that sediments through sucrose gradients to form a pellet. However, the level of H1 histone remains at control values for oligonucleosomes (dimer to hexamer) over the 30% digestion range studied. An increase in ionic strength to 0.3 M NaCl in the density gradient reveals a different pattern of H1 binding, whereby the amount of H1 reflects the average size of the DNA fragments with which it is associated. Although there is significant binding to nucleosomes per se, it appears that the major ionic involvement of H1 is with internucleosomal spacer DNA.  相似文献   

19.
Summary Yeast chromatin, isolated by a rapid procedure contains in addition to histones H2A, H2B, H3 and H4 a fifth major basic protein. This fifth polypeptide is not an intrinsic component of the nucleosome structure. It has properties of both histone and nonhistone proteins and might represent an early form of histone H1 and of high mobility group nonhistone proteins of higher eukaryotes.Electron microscopic visualization of isolated yeast nucleosomes substantiates further the similarity of the chromatin structure of this unicellular eukaryote to that of higher eukaryotes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号