首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Presynaptic inhibition of primary afferents can be evoked from at least three sources in the adult animal: 1) by stimulation of several supraspinal structures; 2) by spinal reflex action from sensory inputs; or 3) by the activity of spinal locomotor networks. The depolarisation in the intraspinal afferent terminals which is due, at least partly, to the activation of GABA(A) receptors may be large enough to reach firing threshold and evoke action potentials that are antidromically conducted into peripheral nerves. Little is known about the development of presynaptic inhibition and its supraspinal control during ontogeny. This article, reviewing recent experiments performed on the in vitro brainstem/spinal cord preparation of the neonatal rat, demonstrates that a similar organisation is present, to some extent, in the new-born rat. A spontaneous activity consisting of antidromic discharges can be recorded from lumbar dorsal roots. The discharges are generated by the underlying afferent terminal depolarizations reaching firing threshold. The number of antidromic action potentials increases significantly in saline solution with chloride concentration reduced to 50% of control. Bath application of the GABA(A) receptor antagonist, bicuculline (5-10 microM) blocks the antidromic discharges almost completely. Dorsal root discharges are therefore triggered by chloride-dependent GABA(A) receptor-mediated mechanisms; 1) activation of descending pathways by stimulation delivered to the ventral funiculus (VF) of the spinal cord at the C1 level; 2) activation of sensory inputs by stimulation of a neighbouring dorsal root; or 3) pharmacological activation of the central pattern generators for locomotion evokes antidromic discharges in dorsal roots. VF stimulation also inhibited the response to dorsal root stimulation. The time course of this inhibition overlapped with that of the dorsal root discharge suggesting that part of the inhibition of the monosynaptic reflex may be exerted at a presynaptic level. The existence of GABA(A) receptor-independent mechanisms and the roles of the antidromic discharges in the neonatal rat are discussed.  相似文献   

2.
Together, acid-sensing ion channels (ASICs) and epithelial sodium channels (ENaC) constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Here we show that ASICs were reversibly inhibited by activation of GABA(A) receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABA(A) receptor-mediated currents. Moreover, activation of the GABA(A) receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABA(A) receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABA(A) receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABA(A) receptors, also modified ASICs in spinal neurons. We conclude that GABA(A) receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels.  相似文献   

3.
In crayfish, movement of the tailfan causes stimulation of exteroceptive sensory hairs located on its surface. Movement is monitored by a proprioceptor, the protopodite-endopodite chordotonal organ within the tailfan. Proprioceptive afferents provide indirect presynaptic inhibitory inputs to sensory hair afferents in the form of primary afferent depolarizations (PADs). Bath application of nitric oxide (NO) substrates, donors and scavengers, and nitric oxide synthase (NOS) inhibitors had no effect on the responses of proprioceptive afferents during imposed movements of the chordotonal organ. In contrast, the amplitude of PADs in exteroceptive hair afferents was dependent on NO levels. NO levels were altered by bath-application of the NO-precursor L-arginine, the NO donor SNAP, the NOS-inhibitor L-NAME, and the NO scavenger PTIO, while changes in PAD amplitude were measured. Application of L-arginine or SNAP resulted in consistent decreases in PAD amplitude, whereas L-NAME and PTIO induced increases in PAD amplitude. These results suggest that endogenous NO decreases inhibitory inputs to exteroceptive neurons, thus enhancing transmitter release at their output synapses.  相似文献   

4.
Transient receptor potential melastatin 8 (TRPM8) ion channels mediate the detection of noxious and innocuous cold and are expressed by primary sensory neurons, but little is known about the processing of the TRPM8-mediated cold information within the trigeminal sensory nuclei (TSN) and the spinal dorsal horn (DH). To address this issue, we characterized TRPM8-positive (+) neurons in the trigeminal ganglion and investigated the distribution of TRPM8+ axons and terminals, and their synaptic organization in the TSN and in the DH using light and electron microscopic immunohistochemistry in transgenic mice expressing a genetically encoded axonal tracer in TRPM8+ neurons. TRPM8 was expressed in a fraction of small myelinated primary afferent fibers (23.7%) and unmyelinated fibers (76.3%), suggesting that TRPM8-mediated cold is conveyed via C and Aδ afferents. TRPM8+ axons were observed in all TSN, but at different densities in the dorsal and ventral areas of the rostral TSN, which dominantly receive sensory afferents from intra- and peri-oral structures and from the face, respectively. While synaptic boutons arising from Aδ and non-peptidergic C afferents usually receive many axoaxonic contacts and form complex synaptic arrangements, TRPM8+ boutons arising from afferents of the same classes of fibers showed a unique synaptic connectivity; simple synapses with one or two dendrites and sparse axoaxonic contacts. These findings suggest that TRPM8-mediated cold is conveyed via a specific subset of C and Aδ afferent neurons and is processed in a unique manner and differently in the TSN and DH.  相似文献   

5.
Inhibitory interneurons in the dorsal lateral geniculate nucleus (dLGN) process visual information by precisely controlling spike timing and by refining the receptive fields of thalamocortical (TC) neurons. Previous studies indicate that dLGN interneurons inhibit TC neurons by releasing GABA from both axons and dendrites. However, the mechanisms controlling GABA release are poorly understood. Here, using simultaneous whole-cell recordings from interneurons and TC neurons and two-photon calcium imaging, we find that synchronous activation of multiple retinal ganglion cells (RGCs) triggers sodium spikes that propagate throughout interneuron axons and dendrites, and calcium spikes that invade dendrites but not axons. These distinct modes of interneuron firing can trigger both a rapid and a sustained component of inhibition onto TC neurons. Our studies suggest that active conductances make LGN interneurons flexible circuit-elements that can shift their spatial and temporal properties of GABA release in response to coincident activation of functionally related subsets of RGCs.  相似文献   

6.
Intracellular recording techniques were used to study electrical activity in bipolar sensory cells associated with crayfish tactile receptors. Several lines of evidence indicate that spikes evoked by natural stimulation of the receptor originate at a dendritic locus. Although overshooting spikes are recorded in the soma in response to both natural and antidromic stimulation receptor potentials are observed only rarely, and, when present, their amplitude is less than 5 mv. Impulses propagating centrifugally into the soma following antidromic stimulation always exhibit an inflection in the rising phase of the spike; however, orthodromic spikes are usually uninflected. Occasionally, orthodromic responses (in the soma) exhibit rather unusual wave forms. Such spikes evoked by natural stimuli are indistinguishable from those elicited electrically in the dendrite, but they do not resemble antidromic impulses. Because the axonal and dendritic boundaries of the soma have a low safety factor for spike transmission, at high frequencies invasion of the soma by dendritic spikes is impeded and often blocked. The soma region can thus act as a low-pass filter. The significance of this self-limiting mechanism for the behavior of the animal is not known; it is suggested, however, that this impediment is a potentially critical one, and may, in other situations, have encouraged the evolution of alternative arrangements.  相似文献   

7.
Effects of GABA on the background and electrically stimulated activity of single neurons and population spikes were investigated in isolated hippocampal slices. Application of relatively large GABA concentrations (10(-3) mol/l and more) depressed an antidromic population spike, field EPSP and neuronal background activity. Low concentrations of GABA (less than 10(-3) mol/l) added to the bath increased the population spikes amplitude and the late component of field EPSP, facilitated single neurone responses, their background activity and epileptiform discharges. GABA-evoked depolarization was observed in the majority of the studied neurons. The duality of the GABA action on central neurons are discussed.  相似文献   

8.
The development of connections between thalamic afferents and their cortical target cells occurs in a highly precise manner. Thalamic axons enter the cortex through deep cortical layers, then stop their growth in layer 4 and elaborate terminal arbors specifically within this layer. The mechanisms that underlie target layer recognition for thalamocortical projections are not known. We compared the growth pattern of thalamic explants cultured on membrane substrates purified from cortical layer 4, the main recipient layer for thalamic axons, and cortical layer 5, a non-target layer. Thalamic axons exhibited a reduced growth rate and an increased branching density on their appropriate target membranes compared with non-target substrate. When confronted with alternating stripes of both membrane substrates, thalamic axons grew preferentially on their target membrane stripes. Enzymatic treatment of cortical membranes revealed that growth, branching and guidance of thalamic axons are independently regulated by attractive and repulsive cues differentially expressed in distinct cortical layers. These results indicate that multiple membrane-associated molecules collectively contribute to the laminar targeting of thalamic afferents. Furthermore, we found that interfering with the function of Eph tyrosine kinase receptors and their ligands, ephrins, abolished the preferential branching of thalamic axons on their target membranes, and that recombinant ephrin-A5 ligand elicited a branch-promoting activity on thalamic axons. We conclude that interactions between Eph receptors and ephrins mediate branch formation of thalamic axons and thereby may play a role in the establishment of layer-specific thalamocortical connections.  相似文献   

9.
It is generally assumed that axons use action potentials (APs) to transmit information fast and reliably to synapses. Yet, the reliability of transmission along fibers below 0.5 μm diameter, such as cortical and cerebellar axons, is unknown. Using detailed models of rodent cortical and squid axons and stochastic simulations, we show how conduction along such thin axons is affected by the probabilistic nature of voltage-gated ion channels (channel noise). We identify four distinct effects that corrupt propagating spike trains in thin axons: spikes were added, deleted, jittered, or split into groups depending upon the temporal pattern of spikes. Additional APs may appear spontaneously; however, APs in general seldom fail (<1%). Spike timing is jittered on the order of milliseconds over distances of millimeters, as conduction velocity fluctuates in two ways. First, variability in the number of Na channels opening in the early rising phase of the AP cause propagation speed to fluctuate gradually. Second, a novel mode of AP propagation (stochastic microsaltatory conduction), where the AP leaps ahead toward spontaneously formed clusters of open Na channels, produces random discrete jumps in spike time reliability. The combined effect of these two mechanisms depends on the pattern of spikes. Our results show that axonal variability is a general problem and should be taken into account when considering both neural coding and the reliability of synaptic transmission in densely connected cortical networks, where small synapses are typically innervated by thin axons. In contrast we find that thicker axons above 0.5 μm diameter are reliable.  相似文献   

10.
Abdominal stretch receptor neurons of Procambarus clarkii were voltage clamped with two microelectrodes, and the synaptic currents set up by stimulating the inhibitory axons, or by rapid bath application of gamma-aminobutyric acid (GABA), were recorded. The inhibitory postsynaptic current (IPSC) decay was exponential, the time constant of decay being increased by membrane depolarization. The IPSC decay was prolonged by diphenylhydantoin, whereas the IPSC amplitude was depressed by picrotoxin. It is suggested that these effects may reflect slowing of the channel closing and opening rates, respectively. Step clamps applied in the presence of GABA yield currents that show inactivation in the 100 ms time range. This inactivation was shown to reflect chloride movement across the membrane. Step clamp data were used to construct dose-response curves. Diphenylhydantoin shifts the dose-response curve to the left with little change in the maximum response. Picrotoxin shifts the curve to the right with a small reduction in the maximum response. These effects are consistent with the postulated effects on channel opening and closing rates, if GABA normally opens a large portion of the channels. Suitable combinations of picrotoxin and diphenylhydantoin acting together leave the dose-response curve unmodified, as predicted.  相似文献   

11.
杀虫药剂的神经毒理学研究进展   总被引:23,自引:1,他引:23  
伍一军  冷欣夫 《昆虫学报》2003,46(3):382-389
大多数杀虫药剂都具有较强的神经毒性,它们对神经系统的作用靶标不同。有机磷类杀虫剂不仅抑制乙酰胆碱酯酶活性和乙酰胆碱受体功能,影响乙酰胆碱的释放,而且还具有非胆碱能毒性,有些有机磷杀虫剂还能引发迟发性神经毒性。新烟碱类杀虫剂作为烟碱型乙酰胆碱受体(nAChR)的激动剂,作用于该类受体的α亚基;它对昆虫的毒性比对哺乳动物的毒性大得多,乃是因为它对昆虫和哺乳动物nAChR的作用位点不同。拟除虫菊酯类杀虫剂主要作用于神经细胞钠通道,引起持续开放,导致传导阻滞;该类杀虫剂也可抑制钙通道。另外,这类杀虫剂还干扰谷氨酸递质和多巴胺神经元递质的释放。拟除虫菊酯类杀虫剂对昆虫的选择毒性很可能是因为昆虫神经元的钠通道结构与哺乳动物的不同。阿维菌素类杀虫剂主要作用于γ-氨基丁酸(GABA)受体,它能促进GABA的释放,增强GABA与GABA受体的结合,使氯离子内流增加,导致突触后膜超级化。由于这类杀虫剂难以穿透脊椎动物的血脑屏障而与中枢神经系统的GABA受体结合,故该类杀虫剂对脊椎动物的毒性远低于对昆虫的毒性。多杀菌素类杀虫剂可与中枢神经系统的nAChR作用,引起Ach长时间释放,此外,这类杀虫剂还可作用于昆虫的GABA受体,改变GABA门控氯通道的功能。  相似文献   

12.
The electrophysiological responses of water, salt and sugar receptors in the labellar chemosenory hair of Drosophila were investigated. In contrast to the responses of large flies such as blowfly and fleshfly, spike height changed in parallel with the spike frequencies in all the three kind of receptors, and at the same time, the spike also changed in shape: when the receptor potential was small, the spike was small and biphasic, but when the receptor potential was large, the spike was large and monophasic. These phenomena are consistently explained by assuming that antidromic conduction of spikes in the distal process of the receptor cells is blocked due to inactivation of Na channels by the depolarizing receptor potential.  相似文献   

13.

Background

A proportion of small diameter primary sensory neurones innervating human skin are chemosensitive. They respond in a receptor dependent manner to chemical mediators of inflammation as well as naturally occurring algogens, thermogens and pruritogens. The neurotransmitter GABA is interesting in this respect because in animal models of neuropathic pain GABA pre-synaptically regulates nociceptive input to the spinal cord. However, the effect of GABA on human peripheral unmyelinated axons has not been established.

Methodology/Principal Findings

Electrical stimulation was used to assess the effect of GABA on the electrical excitability of unmyelinated axons in isolated fascicles of human sural nerve. GABA (0.1–100 µM) increased electrical excitability in a subset (ca. 40%) of C-fibres in human sural nerve fascicles suggesting that axonal GABA sensitivity is selectively restricted to a sub-population of human unmyelinated axons. The effects of GABA were mediated by GABAA receptors, being mimicked by bath application of the GABAA agonist muscimol (0.1–30 µM) while the GABAB agonist baclofen (10–30 µM) was without effect. Increases in excitability produced by GABA (10–30 µM) were blocked by the GABAA antagonists gabazine (10–20 µM), bicuculline (10–20 µM) and picrotoxin (10–20 µM).

Conclusions/Significance

Functional GABAA receptors are present on a subset of unmyelinated primary afferents in humans and their activation depolarizes these axons, an effect likely due to an elevated intra-axonal chloride concentration. GABAA receptor modulation may therefore regulate segmental and peripheral components of nociception.  相似文献   

14.
Summary Efferent and sensory axons were monitored near the carpopoditepropodite joint of the crayfish (Procambarus clarkii) cheliped using en passant suction electrodes. Controlled movements were imposed by an electric motor; tactile stimulation was delivered either manually or with electrically controlled mechanical probes. Statistical spike train analysis methods were used to study correlated firing among the observed neurons. We find that individual spikes in proprioceptive afferents have a strong excitatory effect on OI and CE, probably through a monosynaptic connection. These relationships are observed for proprioceptive axons that are active during claw opening or closing, or that are tonically active when the claw is motionless. Conversely, individual OE or OI spikes exert excitatory or inhibitory (respectively) effects on the firing of proprioceptive units sensitive to claw opening. This suggests that individual efferent spikes can produce enough change in claw position to modulate proprioceptive responses. Tactile afferents also excited OI and CE strongly and directly.This work was supported by NIH Grants NH 15767 and NS 05606  相似文献   

15.
Propofol is a widely used intravenous general anesthetic. Propofol-induced unconsciousness in humans is associated with inhibition of thalamic activity evoked by somatosensory stimuli. However, the cellular mechanisms underlying the effects of propofol in thalamic circuits are largely unknown. We investigated the influence of propofol on synaptic responsiveness of thalamocortical relay neurons in the ventrobasal complex (VB) to excitatory input in mouse brain slices, using both current- and voltage-clamp recording techniques. Excitatory responses including EPSP temporal summation and action potential firing were evoked in VB neurons by electrical stimulation of corticothalamic fibers or pharmacological activation of glutamate receptors. Propofol (0.6 – 3 μM) suppressed temporal summation and spike firing in a concentration-dependent manner. The thalamocortical suppression was accompanied by a marked decrease in both EPSP amplitude and input resistance, indicating that a shunting mechanism was involved. The propofol-mediated thalamocortical suppression could be blocked by a GABAA receptor antagonist or chloride channel blocker, suggesting that postsynaptic GABAA receptors in VB neurons were involved in the shunting inhibition. GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) were evoked in VB neurons by electrical stimulation of the reticular thalamic nucleus. Propofol markedly increased amplitude, decay time, and charge transfer of GABAA IPSCs. The results demonstrated that shunting inhibition of thalamic somatosensory relay neurons by propofol at clinically relevant concentrations is primarily mediated through the potentiation of the GABAA receptor chloride channel-mediated conductance, and such inhibition may contribute to the impaired thalamic responses to sensory stimuli seen during propofol-induced anesthesia.  相似文献   

16.
目的 深部脑刺激(deep brain stimulation,DBS)利用持续的电脉冲高频刺激(high-frequency stimulation,HFS)调控神经元的活动,可望用于治疗更多脑疾病。为了深入了解HFS的作用机制,促进DBS的发展,本文研究轴突HFS在引起轴突阻滞期间神经元胞体的改变。方法 在麻醉大鼠海马CA1区的锥体神经元轴突上施加脉冲频率为100 Hz的1 min逆向高频刺激(antidromic high-frequency stimulation,A-HFS)。为了研究胞体的响应,利用线性垂直排列的多通道微电极阵列,记录刺激位点上游CA1区锥体神经元胞体附近各结构分层上的诱发电位,包括A-HFS脉冲诱发的逆向群峰电位(antidromic population spike,APS)以及A-HFS期间施加的顺向测试脉冲诱发的顺向群峰电位(orthodromic population spike,OPS),并计算诱发电位的电流源密度(current-source density,CSD),用于分析A-HFS期间锥体神经元胞体附近动作电位的生成和传导。结果 锥体神经...  相似文献   

17.
What are the fundamental constraints on the precision and accuracy with which nervous systems can process information? One constraint must reflect the intrinsic “noisiness” of the mechanisms that transmit information between nerve cells. Most neurons transmit information through the probabilistic generation and propagation of spikes along axons, and recent modeling studies suggest that noise from spike propagation might pose a significant constraint on the rate at which information could be transmitted between neurons. However, the magnitude and functional significance of this noise source in actual cells remains poorly understood. We measured variability in conduction time along the axons of identified neurons in the cercal sensory system of the cricket Acheta domesticus, and used information theory to calculate the effects of this variability on sensory coding. We found that the variability in spike propagation speed is not large enough to constrain the accuracy of neural encoding in this system.  相似文献   

18.
The spatial distribution of ion channels within amacrine cells of the tiger salamander retina was studied using patch recording in the retinal slice preparation. By focally puffing kainate, GABA and glycine at amacrine cell processes in the inner plexiform layer, it was determined that the cell's glutamate receptors were located in a confined region of the processes near the soma, while glycine and GABA receptors were located throughout the processes. Likewise, similar techniques in conjunction with voltage steps demonstrated that voltage-gated sodium channels were located throughout the cell and were shown to generate sodium-dependent spikes, while only the processes contained voltage-gated calcium channels. These results suggest that this form of transient amacrine cell collects its excitatory synaptic inputs in a region confined to a central annular region near the soma, that the signal is actively propagated throughout its processes by voltage-gated sodium channels and that calcium-dependent neurotransmitter release of glycine from this neuron can occur throughout its processes. Thus, excitatory signals are collected in the processes near the soma, inhibitory signals throughout the processes and excitation is probably propagated throughout the processes of the amacrine cell.  相似文献   

19.
Electrical stimulation of mechanosensory afferents innervating hairs on the surface of the exopodite in crayfish Procambarus clarkii (Girard) elicited reciprocal activation of the antagonistic set of uropod motor neurones. The closer motor neurones were excited while the opener motor neurones were inhibited. This reciprocal pattern of activity in the uropod motor neurones was also produced by bath application of acetylcholine (ACh) and the cholinergic agonist, carbamylcholine (carbachol). The closing pattern of activity in the uropod motor neurones produced by sensory stimulation was completely eliminated by bath application of the ACh blocker, d-tubocurarine, though the spontaneous activity of the motor neurones was not affected significantly. Bath application of the acetylcholinesterase inhibitor, neostigmine, increased the amplitude and extended the time course of excitatory postsynaptic potentials (EPSPs) of ascending interneurones elicited by sensory stimulation. These results strongly suggest that synaptic transmission from mechanosensory afferents innervating hairs on the surface of the tailfan is cholinergic.Bath application of the cholinergic antagonists, dtubocurarine (vertebrate nicotinic antagonist) and atropine (muscarinic antagonist) reversibly reduced the amplitude of EPSPs in many identified ascending and spiking local interneurones during sensory stimulation. Bath application of the cholinergic agonists, nicotine (nicotinic agonist) and oxotremorine (muscarinic agonist) also reduced EPSP amplitude. Nicotine caused a rapid depolarization of membrane potential with, in some cases, spikes in the interneurones. In the presence of nicotine, interneurones showed almost no response to the sensory stimulation, probably owing to desensitization of postsynaptic receptors. On the other hand, no remarkable changes in membrane potential of interneurones were observed after oxotremorine application. These results suggest that ACh released from the mechanosensory afferents depolarizes interneurones by acting on receptors similar to vertebrate nicotinic receptors.Abbreviations ACh cetylcholine - mns motor neurones - asc int ascending interneurone  相似文献   

20.
Action potential (AP) propagation in myelinated nerves requires clustered voltage gated sodium and potassium channels. These channels must be specifically localized to nodes of Ranvier where the AP is regenerated. Several mechanisms have evolved to facilitate and ensure the correct assembly and stabilization of these essential axonal domains. This review highlights the current understanding of the axon intrinsic and glial extrinsic mechanisms that control the formation and maintenance of the nodes of Ranvier in both the peripheral nervous system (PNS) and central nervous system (CNS).Axons conduct electrical signals, called action potentials (APs), among neurons in a circuit in response to sensory input, and between motor neurons and muscles. In mammals and other vertebrates, many axons are myelinated. Myelin, made by Schwann cells and oligodendrocytes in the peripheral nervous system (PNS) and central nervous system (CNS), respectively, is a multilamellar sheet of glial membrane that wraps around axons to increase transmembrane resistance and decrease membrane capacitance. Although myelin is traditionally viewed as a passive contributor to nervous system function, it is now recognized that myelinating glia also play many active roles including regulation of axon diameter, axonal energy metabolism, and the clustering of ion channels at gaps in the myelin sheath called nodes of Ranvier. Together, the active and passive properties conferred on axons by myelin, result in axons with high AP conduction velocities, low metabolic demands, and reduced space requirements as compared with unmyelinated axons. Thus, myelin and the clustering of ion channels in axons permitted the evolution of the complex nervous systems found in vertebrates. This review highlights the current understanding of the axonal intrinsic and glial extrinsic mechanisms that control the formation and maintenance of the nodes of Ranvier in both the PNS and CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号