首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Tyrosine phosphatases (PTPs) epsilon and alpha are closely related and share several molecular functions, such as regulation of Src family kinases and voltage-gated potassium (Kv) channels. Functional interrelationships between PTPepsilon and PTPalpha and the mechanisms by which they regulate K+ channels and Src were analyzed in vivo in mice lacking either or both PTPs. Lack of either PTP increases Kv channel activity and phosphorylation in Schwann cells, indicating these PTPs inhibit Kv current amplitude in vivo. Open probability and unitary conductance of Kv channels are unchanged, suggesting an effect on channel number or organization. PTPalpha inhibits Kv channels more strongly than PTPepsilon; this correlates with constitutive association of PTPalpha with Kv2.1, driven by membranal localization of PTPalpha. PTPalpha, but not PTPepsilon, activates Src in sciatic nerve extracts, suggesting Src deregulation is not responsible exclusively for the observed phenotypes and highlighting an unexpected difference between both PTPs. Developmentally, sciatic nerve myelination is reduced transiently in mice lacking either PTP and more so in mice lacking both PTPs, suggesting both PTPs support myelination but are not fully redundant. We conclude that PTPepsilon and PTPalpha differ significantly in their regulation of Kv channels and Src in the system examined and that similarity between PTPs does not necessarily result in full functional redundancy in vivo.  相似文献   

2.
Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta, PTPepsilon, CD45, LAR, PTP1B and SHP-1), using pNPP as substrate. Most noticeable is the increase in the turnover number for PTPbeta with increasing pH and the weak pH-dependence of the turnover number of CD45. The kinetic data for PTPalpha-D1 and PTPalpha-D1D2 suggest that D2 affects the catalysis of pNPP. PTPepsilon and the closely homologous PTPalpha behave differently. The K(m) data were lower for PTPepsilon than those for PTPalpha, while the inverse was observed for the catalytic efficiencies.  相似文献   

3.
It is well established that the neuropeptide gonadotropin-releasing hormone (GnRH) regulates the secretion of pituitary gonadotropins. Evidence also suggests a neuromodulatory role for GnRH, yet its mechanism is unknown. It has recently been shown that in the medaka genome, the GnRH II and GnRH III genes reside adjoining the genes encoding protein tyrosine phosphatase alpha (PTPalpha) and PTP, respectively. Here we isolated and characterized PTPalpha and PTP in the medaka, and demonstrated using an in vitro medaka whole-brain culture system that GnRH downregulates the PTPalpha/PTP gene expression. This finding, together with the fact that PTPalpha/PTP regulate neuronal excitability through interacting with voltage-gated potassium channel, suggests that GnRH gene products would act as neuromodulators via downregulating their neighboring PTPalpha/PTP genes.  相似文献   

4.
cDNA expression library screening revealed binding between the membrane distal catalytic domain (D2) of protein-tyrosine phosphatase alpha (PTPalpha) and calmodulin. Characterization using surface plasmon resonance showed that calmodulin bound to PTPalpha-D2 in a Ca(2+)-dependent manner but did not bind to the membrane proximal catalytic domain (D1) of PTPalpha, to the two tandem catalytic domains (D1D2) of PTPalpha, nor to the closely related D2 domain of PTPepsilon. Calmodulin bound to PTPalpha-D2 with high affinity, exhibiting a K(D) approximately 3 nm. The calmodulin-binding site was localized to amino acids 520-538 in the N-terminal region of D2. Site-directed mutagenesis showed that Lys-521 and Asn-534 were required for optimum calmodulin binding and that restoration of these amino acids to the counterpart PTPepsilon sequence could confer calmodulin binding. The overlap of the binding site with the predicted lip of the catalytic cleft of PTPalpha-D2, in conjunction with the observation that calmodulin acts as a competitive inhibitor of D2-catalyzed dephosphorylation (K(i) approximately 340 nm), suggests that binding of calmodulin physically blocks or distorts the catalytic cleft of PTPalpha-D2 to prevent interaction with substrate. When expressed in cells, full-length PTPalpha and PTPalpha lacking only D1, but not full-length PTPepsilon, bound to calmodulin beads in the presence of Ca(2+). Also, PTPalpha was found in association with calmodulin immunoprecipitated from cell lysates. Thus calmodulin does associate with PTPalpha in vivo but not with PTPalpha-D1D2 in vitro, highlighting a potential conformational difference between these forms of the tandem catalytic domains. The above findings suggest that calmodulin is a possible specific modulator of PTPalpha-D2 and, via D2, of PTPalpha.  相似文献   

5.
Taing M  Keng YF  Shen K  Wu L  Lawrence DS  Zhang ZY 《Biochemistry》1999,38(12):3793-3803
Several protein tyrosine phosphatases (PTPases) have been implicated as regulatory agents in the insulin-stimulated signal transduction pathway, including PTP1B, PTPalpha, and LAR. Furthermore, since all three enzymes are suggested to serve as negative regulators of insulin signaling, one or more may play a pivotal role in the pathogenesis of insulin resistance. We report herein the acquisition of highly selective PTP1B-targeted inhibitors. We recently demonstrated that PTP1B contains two proximal aromatic phosphate binding sites [Puius, Y. A., Zhao, Y., Sullivan, M., Lawrence, D. S., Almo S. C., and Zhang, Z. Y. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 13420-5], and we have now employed this structural feature to design and synthesize an array of bis(aryldifluorophosphonates). Not only do the lead compounds serve as potent inhibitors of PTP1B but, in addition, several exhibit selectivities for PTP1B versus PTPalpha, LAR, and VHR that are greater than 2 orders in magnitude.  相似文献   

6.
During mitosis, the catalytic activity of protein-tyrosine phosphatase (PTP) alpha is enhanced, and its inhibitory binding to Grb2, which specifically blocks Src dephosphorylation, is decreased. These effects act synergistically to activate Src in mitosis. We show here that these effects are abrogated by mutation of Ser180 and/or Ser204, the sites of protein kinase C-mediated phosphorylation within PTPalpha. Moreover, either a Ser-to-Ala substitution or serine dephosphorylation specifically eliminated the ability of PTPalpha to dephosphorylate and activate Src even during interphase. This explains why the substitutions eliminated PTPalpha transforming activity, even though PTPalpha interphase dephosphorylation of nonspecific substrates was only slightly decreased. This occurred without change in the phosphorylation of PTPalpha at Tyr789, which is required for "phosphotyrosine displacement" during Src dephosphorylation. Thus, in addition to increasing PTPalpha nonspecific catalytic activity, Ser180 and Ser204 phosphorylation (along with Tyr789 phosphorylation) regulates PTPalpha substrate specificity. This involves serine phosphorylation-dependent differential modulation of the affinity of Tyr(P)789 for the Src and Grb2 SH2 domains. The results suggest that protein kinase C may participate in the mitotic activation of PTPalpha and Src and that there are intramolecular interactions between the PTPalpha C-terminal and membrane-proximal regions that are regulated, at least in part, by serine phosphorylation.  相似文献   

7.
CD45 is a major membrane protein tyrosine phosphatase (PTP) expressed in T cells where it regulates the activity of Lck, a Src family kinase important for T cell receptor-mediated activation. PTPalpha is a more widely expressed transmembrane PTP that has been shown to regulate the Src family kinases, Src and Fyn, and is also present in T cells. Here, PTPalpha was phosphorylated at Tyr-789 in CD45(-) T cells but not in CD45(+) T cells suggesting that CD45 could regulate the phosphorylation of PTPalpha at this site. Furthermore, CD45 could directly dephosphorylate PTPalpha in vitro. Expression of PTPalpha and PTPalpha-Y789F in T cells revealed that the mutant had a reduced ability to decrease Fyn and Cbp phosphorylation, to regulate the kinase activity of Fyn, and to restore T cell receptor-induced signaling events when compared with PTPalpha. Conversely, this mutant had an increased ability to prevent Pyk2 phosphorylation and CD44-mediated cell spreading when compared with PTPalpha. These data demonstrate distinct activities of PTPalpha and PTPalpha-Y789F in T cells and identify CD45 as a regulator of PTPalpha phosphorylation at tyrosine 789 in T cells.  相似文献   

8.
Src kinase regulation by phosphorylation and dephosphorylation   总被引:10,自引:0,他引:10  
Src and Src-family protein-tyrosine kinases are regulatory proteins that play key roles in cell differentiation, motility, proliferation, and survival. The initially described phosphorylation sites of Src include an activating phosphotyrosine 416 that results from autophosphorylation, and an inhibiting phosphotyrosine 527 that results from phosphorylation by C-terminal Src kinase (Csk) and Csk homologous kinase. Dephosphorylation of phosphotyrosine 527 increases Src kinase activity. Candidate phosphotyrosine 527 phosphatases include cytoplasmic PTP1B, Shp1 and Shp2, and transmembrane enzymes include CD45, PTPalpha, PTPepsilon, and PTPlambda. Dephosphorylation of phosphotyrosine 416 decreases Src kinase activity. Thus far PTP-BL, the mouse homologue of human PTP-BAS, has been shown to dephosphorylate phosphotyrosine 416 in a regulatory fashion. The platelet-derived growth factor receptor protein-tyrosine kinase mediates the phosphorylation of Src Tyr138; this phosphorylation has no direct effect on Src kinase activity. The platelet-derived growth factor receptor and the ErbB2/HER2 growth factor receptor protein-tyrosine kinases mediate the phosphorylation of Src Tyr213 and activation of Src kinase activity. Src kinase is also a substrate for protein-serine/threonine kinases including protein kinase C (Ser12), protein kinase A (Ser17), and CDK1/cdc2 (Thr34, Thr46, and Ser72). Of the three protein-serine/threonine kinases, only phosphorylation by CDK1/cdc2 has been demonstrated to increase Src kinase activity. Although considerable information on the phosphoprotein phosphatases that catalyze the hydrolysis of Src phosphotyrosine 527 is at hand, the nature of the phosphatases that mediate the hydrolysis of phosphotyrosine 138 and 213, and phosphoserine and phosphothreonine residues has not been determined.  相似文献   

9.
Protein-tyrosine phosphatase-alpha (PTPalpha) activates Src family kinases (SFKs) to promote the integrin-stimulated early autophosphorylation of focal adhesion kinase (FAK). We report here that integrin stimulation induces tyrosine phosphorylation of PTPalpha. PTPalpha was dephosphorylated upon fibroblast detachment from the substratum and rephosphorylated when cells were plated on the integrin ligand fibronectin. alpha PTP phosphorylation occurred at Tyr789 and required SFKs (Src or Fyn/Yes), FAK, and an intact cytoskeleton. It also required active PTPalpha or constitutively active Src. These observations indicate that PTPalpha activates SFKs and that the subsequently activated SFK.FAK tyrosine kinase complex in turn phosphorylates PTPalpha. Reintroduction of wild-type PTPalpha or unphosphorylatable PTPalpha(Y789F) (but not inactive PTPalpha) into PTPalpha-null fibroblasts restored defective integrin-induced SFK activation, FAK phosphorylation, and paxillin phosphorylation. PTPalpha(Y789F) and inactive PTPalpha could not rescue delayed actin stress fiber assembly and focal adhesion formation or defective cell migration. This study distinguishes two roles of PTPalpha in integrin signaling: an early role as an activator of SFKs and FAK with no requirement for PTPalpha phosphorylation and a later downstream role in cytoskeleton-associated events for which PTPalpha phosphorylation at Tyr789 is essential.  相似文献   

10.
To study the flexibility of the substrate-binding site and in particular of Gln262, we have performed adiabatic conformational search and molecular dynamics simulations on the crystal structure of the catalytic domain of wild-type protein-tyrosine phosphatase (PTP) 1B, a mutant PTP1B(R47V,D48N,M258C,G259Q), and a model of the catalytically active form of PTPalpha. For each molecule two cases were modeled: the Michaelis-Menten complex with the substrate analogue p-nitrophenyl phosphate (p-PNPP) bound to the active site and the cysteine-phosphor complex, each corresponding to the first and second step of the phosphate hydrolysis. Analyses of the trajectories revealed that in the cysteine-phosphor complex of PTP1B, Gln262 oscillates freely between the bound phosphate group and Gly259 frequently forming, as observed in the crystal structure, a hydrogen bond with the backbone oxygen of Gly259. In contrast, the movement of Gln262 is restricted in PTPalpha and the mutant due to interactions with Gln259 reducing the frequency of the oscillation of Gln262 and thereby delaying the positioning of this residue for the second step in the catalysis, as reflected experimentally by a reduction in k(cat). Additionally, in the simulation with the Michaelis-Menten complexes, we found that a glutamine in position 259 induces steric hindrance by pushing the Gln262 side chain further toward the substrate and thereby negatively affecting K(m) as indicated by kinetic studies. Detailed analysis of the water structure around Gln262 and the active site Cys215 reveals that the probability of finding a water molecule correctly positioned for catalysis is much larger in PTP1B than in PTP1B(R47V,D48N,M258C,G259Q) and PTPalpha, in accordance with experiments.  相似文献   

11.
We characterized the role of protein tyrosine phosphatase (PTP)-alpha in focal adhesion (FA) formation and remodeling using wild-type and PTPalpha-deficient (PTPalpha(-/-)) cells. Compared with wild-type cells, spreading PTPalpha(-/-) fibroblasts displayed fewer leading edges and formed elongated alpha-actinin-enriched FA at the cell periphery. These features suggest the presence of slowly remodeling cell adhesions and were phenocopied in human fibroblasts in which PTPalpha was knocked down using short interfering RNA (siRNA) or in NIH-3T3 fibroblasts expressing catalytically inactive (C433S/C723S) PTPalpha. Fluorescence recovery after photobleaching showed slower green fluorescence protein-alpha-actinin recovery in the FA of PTPalpha(-/-) than wild-type cells. These alterations correlated with reduced cell spreading, adhesion, and polarization and retarded contraction of extracellular matrices in PTPalpha(-/-) fibroblasts. Activation of Rac1 and its recruitment to FA during spreading were diminished in cells expressing C433S/C723S PTPalpha. Rac1(-/-) cells also displayed abnormally elongated and peripherally distributed FA that failed to remodel. Conversely, expression of constitutively active Rac1 restored normal FA remodeling in PTPalpha(-/-) cells. We conclude that PTPalpha is required for remodeling of FA during cell spreading via a pathway involving Rac1.  相似文献   

12.
A role for the receptor protein tyrosine phosphatase alpha (PTPalpha) in immune cell function and regulation of Src family kinases was investigated using thymocytes from PTPalpha-deficient mice. PTPalpha-null thymocytes develop normally, but unstimulated PTPalpha-/- cells exhibit increased tyrosine phosphorylation of specific proteins, increased Fyn activity, and hyperphosphorylation of Cbp/PAG that promotes its association with C-terminal Src kinase. Elevated Fyn activity in the absence of PTPalpha is due to enhanced phosphorylation of Fyn tyrosines 528 and 417. Some PTPalpha is localized in lipid rafts of thymocytes, and raft-associated Fyn is specifically activated in PTPalpha-/- cells. PTPalpha is not a Cbp/PAG phosphatase, because it is not required for Cbp/PAG dephosphorylation in unstimulated or anti-CD3-stimulated thymocytes. Together, our results indicate that PTPalpha, likely located in lipid rafts, regulates the activity of raft Fyn. In the absence of PTPalpha this population of Fyn is activated and phosphorylates Cbp/PAG to enhance association with C-terminal Src kinase. Although TCR-mediated tyrosine phosphorylation was apparently unaffected by the absence of PTPalpha, the long-term proliferative response of PTPalpha-/- thymocytes was reduced. These findings indicate that PTPalpha is a component of the complex Src family tyrosine kinase regulatory network in thymocytes and is required to suppress Fyn activity in unstimulated cells in a manner that is not compensated for by the major T cell PTP and SFK regulator, CD45.  相似文献   

13.
The aim of this study was to define the structural elements that determine the differences in substrate recognition capacity of two protein-tyrosine phosphatases (PTPs), PTP1B and PTPalpha, both suggested to be negative regulators of insulin signaling. Since the Ac-DADE(pY)L-NH(2) peptide is well recognized by PTP1B, but less efficiently by PTPalpha, it was chosen as a tool for these analyses. Calpha regiovariation analyses and primary sequence alignments indicate that residues 47, 48, 258, and 259 (PTP1B numbering) define a selectivity-determining region. By analyzing a set of DADE(pY)L analogs with a series of PTP mutants in which these four residues were exchanged between PTP1B and PTPalpha, either in combination or alone, we here demonstrate that the key selectivity-determining residue is 259. In PTPalpha, this residue is a glutamine causing steric hindrance and in PTP1B a glycine allowing broad substrate recognition. Significantly, replacing Gln(259) with a glycine almost turns PTPalpha into a PTP1B-like enzyme. By using a novel set of PTP inhibitors and x-ray crystallography, we further provide evidence that Gln(259) in PTPalpha plays a dual role leading to restricted substrate recognition (directly via steric hindrance) and reduced catalytic activity (indirectly via Gln(262)). Both effects may indicate that PTPalpha regulates highly selective signal transduction processes.  相似文献   

14.
Hashimoto H  Uji S  Kurokawa T  Washio Y  Suzuki T 《Gene》2007,387(1-2):126-132
The lefty gene encodes a member of the TGF-beta superfamily that regulates L-R axis formation during embryogenesis via antagonistic activity against Nodal, another TGF-beta superfamily member. Both mouse and zebrafish have two lefty genes, lefty1 and lefty2. Interestingly, the expression domains of mouse and zebrafish lefty are different from one another. At present, the orthology and functional diversity of the mouse and zebrafish lefty genes are not clear. Here, we report that flounder and two fugu species, Takifugu and Tetraodon, have a single lefty gene in their genomes. In addition, we provide evidence that the mouse lefty genes were duplicated on a single chromosome but the zebrafish lefty genes arose from a whole-genome duplication that occurred early in the divergence of ray-finned fishes. These independent origins likely explain the difference in the expression domains of the mouse and zebrafish lefty gene pairs. Furthermore, we found that the duplication corresponding to the zebrafish lefty2 gene was lost from the fugu genome, suggesting that loss of lefty2 in the fugu/flounder lineage occurred after its divergence from the zebrafish lineage. During L-R patterning, the single lefty gene of flounder covers two expression domains, the left side of the dorsal diencephalon and the left LPM, which are regulated separately by lefty1 and lefty2 in zebrafish. We infer that the lefty genes of the ray-finned fishes and mammals underwent independent gene duplication events that resulted in independent regulation of lefty expression.  相似文献   

15.
Type 2 diabetes is increasing at an alarming rate worldwide, and there has been a considerable effort in several laboratories to identify suitable targets for the design of drugs against the disease. To this end, the protein tyrosine phosphatases that attenuate insulin signaling by dephosphorylating the insulin receptor (IR) have been actively pursued. This is because inhibiting the phosphatases would be expected to prolong insulin signaling and thereby facilitate glucose uptake and, presumably, result in a lowering of blood glucose. Targeting the IR protein tyrosine phosphatase, therefore, has the potential to be a significant disease-modifying strategy. Several protein tyrosine phosphatases (PTPs) have been implicated in the dephosphorylation of the IR. These phosphatases include PTPalpha, LAR, CD45, PTPepsilon, SHP2, and PTP1B. In most cases, there is evidence for and against the involvement of the phosphatases in insulin signaling. The most convincing data, however, support a critical role for PTP1B in insulin action. PTP1B knockout mice are not only insulin sensitive but also maintain euglycemia (in the fed state), with one-half the level of insulin observed in wild-type littermates. Interestingly, these mice are also resistant to diet-induced obesity when fed a high-fat diet. The insulin-sensitive phenotype of the PTP1B knockout mouse is reproduced when the phosphatase is also knocked down with an antisense oligonucleotide in obese mice. Thus PTP1B appears to be a very attractive candidate for the design of drugs for type 2 diabetes and obesity.  相似文献   

16.
Glycosyl phosphatidylinositol (GPI)-linked receptors and receptor protein tyrosine phosphatases (RPTPs), both play key roles in nervous system development, although the molecular mechanisms are largely unknown. Despite lacking a transmembrane domain, GPI receptors can recruit intracellular src family tyrosine kinases to receptor complexes. Few ligands for the extracellular regions of RPTPs are known, relegating most to the status of orphan receptors. We demonstrate that PTPalpha, an RPTP that dephosphorylates and activates src family kinases, forms a novel membrane-spanning complex with the neuronal GPI-anchored receptor contactin. PTPalpha and contactin associate in a lateral (cis) complex mediated through the extracellular region of PTPalpha. This complex is stable to isolation from brain lysates or transfected cells through immunoprecipitation and to antibody-induced coclustering of PTPalpha and contactin within cells. This is the first demonstration of a receptor PTP in a cis configuration with another cell surface receptor, suggesting an additional mode for regulation of a PTP. The transmembrane and catalytic nature of PTPalpha indicate that it likely forms the transducing element of the complex, and we postulate that the role of contactin is to assemble a phosphorylation-competent system at the cell surface, conferring a dynamic signal transduction capability to the recognition element.  相似文献   

17.
Mice lacking protein tyrosine phosphatase alpha (PTPalpha) exhibited defects in NMDA receptor (NMDAR)-associated processes such as learning and memory, hippocampal neuron migration, and CA1 hippocampal long-term potentiation (LTP). In vivo molecular effectors linking PTPalpha and the NMDAR have not been reported. Thus the involvement of PTPalpha as an upstream regulator of NMDAR tyrosine phosphorylation was investigated in synaptosomes of wild-type and PTPalpha-null mice. Tyrosine phosphorylation of the NMDAR NR2A and NR2B subunits was reduced upon PTPalpha ablation, indicating a positive effect of this phosphatase on NMDAR phosphorylation via intermediate molecules. The NMDAR is a substrate of src family tyrosine kinases, and reduced activity of src, fyn, yes and lck, but not lyn, was apparent in the absence of PTPalpha. In addition, autophosphorylation of proline-rich tyrosine kinase 2 (Pyk2), a tyrosine kinase linked to NMDAR signaling, was also reduced in PTPalpha-deficient synaptosomes. Altered protein tyrosine phosphorylation was not accompanied by altered expression of the NMDAR or the above tyrosine kinases at any stage of PTPalpha-null mouse development examined. In a human embryonic kidney (HEK) 293 cell expression system, PTPalpha enhanced fyn-mediated NR2A and NR2B tyrosine phosphorylation by several-fold. Together, these findings provide evidence that aberrant NMDAR-associated functions in PTPalpha-null mice are due to impaired NMDAR tyrosine phosphorylation resulting from the reduced activity of probably more than one of the src family kinases src, fyn, yes and lck. Defective NMDAR activity in these mice may also be linked to the loss of PTPalpha as an upstream regulator of Pyk2.  相似文献   

18.
Protein-tyrosine phosphatases (PTPs) are important signaling enzymes that have emerged within the last decade as a new class of drug targets. It has previously been shown that suramin is a potent, reversible, and competitive inhibitor of PTP1B and Yersinia PTP (YopH). We therefore screened 45 suramin analogs against a panel of seven PTPs, including PTP1B, YopH, CD45, Cdc25A, VHR, PTPalpha, and LAR, to identify compounds with improved potency and specificity. Of the 45 compounds, we found 11 to have inhibitory potency comparable or significantly improved relative to suramin. We also found suramin to be a potent inhibitor (IC(50) = 1.5 microm) of Cdc25A, a phosphatase that mediates cell cycle progression and a potential target for cancer therapy. In addition we also found three other compounds, NF201, NF336, and NF339, to be potent (IC(50) < 5 microm) and specific (at least 20-30-fold specificity with respect to the other human PTPs tested) inhibitors of Cdc25A. Significantly, we found two potent and specific inhibitors, NF250 and NF290, for YopH, the phosphatase that is an essential virulence factor for bubonic plague. Two of the compounds tested, NF504 and NF506, had significantly improved potency as PTP inhibitors for all phosphatases tested except for LAR and PTPalpha. Surprisingly, we found that a significant number of these compounds activated the receptor-like phosphatases, PTPalpha and LAR. In further characterizing this activation phenomenon, we reveal a novel role for the membrane-distal cytoplasmic PTP domain (D2) of PTPalpha: the direct intramolecular regulation of the activity of the membrane-proximal cytoplasmic PTP domain (D1). Binding of certain of these compounds to PTPalpha disrupts D1-D2 basal state contacts and allows new contacts to occur between D1 and D2, which activates D1 by as much as 12-14-fold when these contacts are optimized.  相似文献   

19.
20.
Impaired insulin receptor (IR) signaling leads to insulin resistance and type 2 diabetes mellitus. Several inhibitors of the IR tyrosine kinase activity have recently been described and associated with human insulin resistance. Among these negative regulators, protein tyrosine phosphatases (PTPs) are likely to play a pivotal role in IR signaling. Transgenic studies revealed that PTP1B and TCPTP are primary candidates but IR of these animals can be finally dephosphorylated, suggesting that other PTPs are also involved in the dephosphorylation of IR. In this study, we showed that receptor-type PTPepsilon (PTP epsilonM) dephosphorylated IR in rat primary hepatocytes and tyrosines 972, 1158, 1162 and 1163 were primary targets of PTP epsilonM. Wild type as well as substrate-trapping DA forms of PTPepsilonM suppressed phosphorylation of IR downstream enzymes such as Akt, extracellular regulated kinase (ERK) and glycogen synthase kinase 3 (GSK3). It was also demonstrated that PTPepsilonM suppressed insulin-induced glycogen synthesis and inhibited insulin-induced suppression of phosphoenol pyruvate carboxykinase (PEPCK) expression in primary hepatocytes. Furthermore, adenovirally introduced PTPepsilonM also exhibited inhibitory activity against suppression of PEPCK expression in mouse liver. These results suggest that PTPepsilonM is a negative regulator of IR signaling and involved in insulin-induced glucose metabolism mainly through direct dephosphorylation and inactivation of IR in hepatocytes and liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号