首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A quantitative bioluminescence assay for rapid and sensitive microRNA (miRNA) expression analysis was developed. The assay uses miRNA directly as a primer for binding to a circular single-stranded DNA template, followed by rolling circle amplification. The detection of inorganic pyrophosphate (PPi) molecules released during the DNA polymerization and amplification process is performed by a multi-enzyme system. PPi is converted to ATP by ATP-sulfurylase, which provides energy for luciferase to oxidize luciferin and produce light. Experimental results show that the assay has a dynamic range exceeding three orders of magnitude and the ability to discriminate miRNAs with high-homology sequences. Quantification of nine miRNAs in human heart tissues demonstrated high cross-platform consistency between this assay and the TaqMan real-time polymerase chain reaction (PCR) assay with R(2)=0.941. The assay requires fewer reagents, can be performed at an isothermal condition without thermal cycling, and is capable of detecting miRNAs in less than 1h. Compared with the real-time PCR and microarray-based detection methods, this assay provides a simpler, faster, and less expensive platform for miRNA quantification in life science research, drug discovery, and clinical diagnosis.  相似文献   

2.
We have developed a novel, single-step, isothermal, signal-amplified, and sequence-specific RNA quantification method (L-assay). The L-assay consists of nicking endonuclease, a dual-labeled fluorescent DNA probe (DL-probe), and conformation-interchangeable oligo-DNA (L-DNA). This signal-amplified assay can quantify target RNA concentration in a sequence-specific manner with a coefficient of variation (Cv) of 5% and a lower limit of detection of 0.1 nM. Moreover, this assay allows quantification of target RNA even in the presence of a several thousandfold excess by weight of cellular RNA. In addition, this assay can be used to measure the changes in RNA concentration in real-time and to quantify short RNAs (<30 nucleotides). The L-assay requires only incubation under isothermal conditions, is inexpensive, and is expected to be useful for basic research requiring high-accuracy, easy-to-use RNA quantification, and real-time quantification.  相似文献   

3.
Recent developments in cellular and molecular biology require the accurate quantification of DNA and RNA in large numbers of samples at a sensitivity that enables determination on small quantities. In this study, five current methods for nucleic acid quantification were compared: (i) UV absorbance spectroscopy at 260 nm, (ii) colorimetric reaction with orcinol reagent, (iii) colorimetric reaction based on diphenylamine, (iv) fluorescence detection with Hoechst 33258 reagent, and (v) fluorescence detection with thiazole orange reagent. Genomic DNA of three different microbial species (with widely different G+C content) was used, as were two different types of yeast RNA and a mixture of equal quantities of DNA and RNA. We can conclude that for nucleic acid quantification, a standard curve with DNA of the microbial strain under study is the best reference. Fluorescence detection with Hoechst 33258 reagent is a sensitive and precise method for DNA quantification if the G+C content is less than 50%. In addition, this method allows quantification of very low levels of DNA (nanogram scale). Moreover, the samples can be crude cell extracts. Also, UV absorbance at 260 nm and fluorescence detection with thiazole orange reagent are sensitive methods for nucleic acid detection, but only if purified nucleic acids need to be measured.  相似文献   

4.
5.
The quantification of plasmid DNA by the PicoGreen dye binding assay has been automated, and the effect of quantification of user-submitted templates on DNA sequence quality in a core laboratory has been assessed. The protocol pipets, mixes and reads standards, blanks and up to 88 unknowns, generates a standard curve, and calculates template concentrations. For pUC19 replicates at five concentrations, coefficients of variance were 0.1, and percent errors were from 1% to 7% (n=198). Standard curves with pUC19 DNA were nonlinear over the 1 to 1733 ng/microL concentration range required to assay the majority (98.7%) of user-submitted templates. Over 35,000 templates have been quantified using the protocol. For 1350 user-submitted plasmids, 87% deviated by >or=20% from the requested concentration (500 ng/microL). Based on data from 418 sequencing reactions, quantification of user-submitted templates was shown to significantly improve DNA sequence quality. The protocol is applicable to all types of double-stranded DNA, is unaffected by primer (1 pmol/microL), and is user modifiable. The protocol takes 30 min, saves 1 h of technical time, and costs approximately $0.20 per unknown.  相似文献   

6.
7.
AIMS: The aim of this study was to develop a rapid, sensitive, specific tool for detection and quantification of Mycoplasma agalactiae DNA in sheep milk samples. METHODS AND RESULTS: A real-time polymerase chain reaction (PCR) assay targeting the membrane-protein 81 gene of M. agalactiae was developed. The assay specifically detected M. agalactiae DNA without cross-amplification of other mycoplasmas and common pathogens of small ruminants. The method was reproducible and highly sensitive, providing precise quantification of M. agalactiae DNA over a range of nine orders of magnitude. Compared with an established PCR assay, the real-time PCR was one-log more sensitive, detecting as few as 10(1) DNA copies per 10 microl of plasmid template and 6.5x10(0) colour changing units of reference strain Ba/2. CONCLUSIONS: The real-time PCR assay is a reliable method for the detection and quantification of M. agalactiae DNA in sheep milk samples. The assay is more sensitive than gel-based PCR protocols and provides quantification of the M. agalactiae DNA contained in milk samples. The assay is also quicker than traditional culture methods (2-3 h compared with at least 1 week). SIGNIFICANCE AND IMPACT OF THE STUDY: The established real-time PCR assay will help study the patterns of shedding of M. agalactiae in milk, aiding pathogenesis and vaccine efficacy studies.  相似文献   

8.
9.
The entomopathogenic fungus Metarhizium anisopliae and sister species are some of the most widely used biological control agents for insects. Availability of specific monitoring and quantification tools are essential for the investigation of environmental factors influencing their environmental distribution. Naturally occurring as well as released Metarhizium strains in the environment traditionally are monitored with cultivation-dependent techniques. However, specific detection and quantification may be limited due to the lack of a defined and reliable detection range of such methods. Cultivation-independent PCR-based detection and quantification tools offer high throughput analyses of target taxa in various environments. In this study a cultivation-independent PCR-based method was developed, which allows for specific detection and quantification of the defined Metarhizium clade 1, which is formed by the species Metarhizium majus, Metarhizium guizhouense, Metarhizium pingshaense, Metarhizium anisopliae, Metarhizium robertsii and Metarhiziumbrunneum, formerly included in the M. anisopliae cryptic species complex. This method is based on the use of clade-specific primers, i.e. Ma 1763 and Ma 2097, that are positioned within the internal transcribed spacer regions 1 and 2 of the nuclear ribosomal RNA gene cluster, respectively. BLAST similarity searches and empirical specificity tests performed on target and non-target species, as well as on bulk soil DNA samples, demonstrated specificity of this diagnostic tool for the targeted Metarhizium clade 1. Testing of the primer pair in qPCR assays validated the diagnostic method for specific quantification of Metarhizium clade 1 in complex bulk soil DNA samples that significantly correlated with cultivation-dependent quantification. The new tool will allow for highly specific and rapid detection and quantification of the targeted Metarhizium clade 1 in the environment. Habitat with high Metarhizium clade 1 densities can then be analyzed for habitat preferences in greater detail using cultivation-dependent techniques and genetic typing of isolates.  相似文献   

10.
11.
12.
A PCR assay which allows detection and quantification of Epichloë endophytes in tissues of the grass Bromus erectus is described. PCR with specific primers flanking a microsatellite-containing locus (MS primers) amplified fragments 300 to 400 bp in length from as little as 1.0 pg of fungal genomic DNA in 100 ng of DNA from infected plant material. When annealing temperatures were optimized, all Epichloë and Acremonium strains tested, representing many of the known taxonomic groups, yielded an amplification product, indicating that the MS primers may be useful for in planta detection of a variety of related species, including agronomically important Acremonium coenophialum and Acremonium lolii. No fragments were generated from DNA isolates from uninfected plant material or from unrelated fungi isolated from B. erectus. For diagnostic applications, a B. erectus-specific primer pair was designed for use in multiplex PCR to allow simultaneous amplification of plant and fungal DNA sequences, providing an internal control for PCR failure caused by inhibitory plant compounds present in DNA extracts. For quantitative applications, a heterologous control template in primer binding sites complementary to the MS primers was constructed for use in competitive PCR, allowing direct quantification of Epichloë in plant DNA extracts. The fungal DNA present in infected leaves of B. erectus between 1 and 20 pg per 100 ng of leaf DNA, but the amounts of fungal DNA present in the sheath and blade of a given leaf were correlated, indicating that the degree of infection varied between plant individuals but that leaves were colonized in a uniform way.  相似文献   

13.
We describe the assay of the human cytochrome P450 2D6 in a set of 30 genotyped liver samples using the ‘absolute quantification’ (AQUA) technique. We found approximately 30 fmol CYP2D6 per μg of microsomal protein, with the values spanning from 0 to nearly 80 fmol/μg. This is greater by a factor of 5–10 from the compared to the currently accepted value, which was around 5 fmol/μg. Our results thus suggest that the amount of cytochrome P450 (CYP) enzymes in liver have to be reassessed. We used quantitative Western blotting, calibration standards and activity assays, to validate the results. Our results show, that using the AQUA technique a true assay of CYP2D6 in human liver was possible.  相似文献   

14.
基于SYBR Green I的双链DNA定量方法   总被引:2,自引:0,他引:2  
摘要 基于SYBR Green I荧光染料与双链DNA(dsDNA)结合产生荧光的原理,建立一种高精度、高通量的双链DNA 定量方法。将梯度稀释后的基因组DNA及已知浓度的?DNA与等体积的SYBR Green I(4×)充分混合后,利用荧光定量PCR仪采集荧光信号,以ROX(1×)作为校正染料进行定量分析;同时利用紫外分光光度计对样品进行平行测定,比较该方法与紫外分光光度法的检测限与准确度。紫外分光光度法的检测限为2 ng/?l,而SYBR Green I荧光定量法的检测限可达到0.015 ng/?l,并且在0.015~2 ng/?l范围内,SYBR Green I荧光强度与?DNA浓度呈线性关系(R2=0.9999),比紫外分光光度法灵敏100倍以上,并可准确定量低纯度的DNA样品。此方法具有重复性好、高通量的特点,仅需少量的生物样本即可满足定量要求,为分子生物学研究及临床检验等多个领域提供了一种可靠的dsDNA定量方法。  相似文献   

15.
Mutations in ribosomal RNA (rRNA) have traditionally been detected by the primer extension assay, which is a tedious and multistage procedure. Here, we describe a simple and straightforward fluorescence assay based on binary deoxyribozyme (BiDz) sensors. The assay uses two short DNA oligonucleotides that hybridize specifically to adjacent fragments of rRNA, one of which contains a mutation site. This hybridization results in the formation of a deoxyribozyme catalytic core that produces the fluorescent signal and amplifies it due to multiple rounds of catalytic action. This assay enables us to expedite semi-quantification of mutant rRNA content in cell cultures starting from whole cells, which provides information useful for optimization of culture preparation prior to ribosome isolation. The method requires less than a microliter of a standard Escherichia coli cell culture and decreases analysis time from several days (for primer extension assay) to 1.5 h with hands-on time of ∼10 min. It is sensitive to single-nucleotide mutations. The new assay simplifies the preliminary analysis of RNA samples and cells in molecular biology and cloning experiments and is promising in other applications where fast detection/quantification of specific RNA is required.  相似文献   

16.
The importance of DNA polymerases in biology and biotechnology, and their recognition as potential therapeutic targets, drives development of methods for deriving kinetic characteristics of polymerases and their propensity to perform polynucleotide synthesis over modified DNA templates. Among various polymerases, translesion synthesis (TLS) polymerases enable cells to avoid the cytotoxic stalling of replicative DNA polymerases at chemotherapy-induced DNA lesions, thereby leading to drug resistance. Identification of TLS inhibitors to overcome drug-resistance necessitates the development of appropriate high-throughput assays. Since polymerase-mediated DNA synthesis involves the release of inorganic pyrophosphate (PPi), we established a universal and fast method for monitoring the progress of DNA polymerases based on the quantification of PPi with a fluorescence-based assay that we coupled to in vitro primer extension reactions. The established assay has a nanomolar detection limit in PPi and enables the evaluation of single nucleotide incorporation and DNA synthesis progression kinetics. The results demonstrated that the developed assay is a reliable method for monitoring TLS and identifying nucleoside and nucleotide-based TLS inhibitors.  相似文献   

17.
18.
本研究旨在利用Real-time RT-PCR对外源基因在工程乳酸菌中的表达进行定量分析,建立一种新的Real-time RT-PCR分析方法。采用玻璃珠热酚法提取工程乳酸菌总RNA,对外源目的基因的反转录(含有cDNA和DNA)样品和非反转录(仅含DNA)样品进行Real-time PCR检测,根据经典绝对定量方法并结合DNA扣除法进行分析,将得到的Ct值通过标准曲线换算为样品拷贝数,通过从反转录样品中扣除DNA样品的拷贝数的量,去除了DNA对实验结果的影响,得出最终的定量结果。采用以上方法分析工程乳酸乳球菌NZ9000中外源纤维素酶基因CBHⅡ的表达情况,对表达量较低的目的基因进行转录水平的分析,避免了RNA的损失,得到了外源基因表达的量为(1.28±0.02)×10-1 copies/cfu。这种基于DNA扣除法的Real-time RT-PCR绝对定量方法可以有效地对外源基因在工程乳酸菌中的表达进行分析。  相似文献   

19.
20.
Species-specific detection and quantification methods for barnacle larvae using quantitative real-time polymerase chain reaction (qPCR) were developed. Species-specific primers for qPCR were designed for 13 barnacle species in the mitochondrial 12S ribosomal RNA gene region. Primer specificity was examined by PCR using template DNA extracted from each of the 13 barnacle species, other unidentified barnacle species, and field collected zooplankton samples. The resulting PCR products comprised single bands following agarose gel electrophoresis when the templates corresponded to primers. The amplifications were highly species-specific even for the field plankton samples. The field plankton samples were subjected to qPCR assay. The calculated DNA contents for each barnacle species were closely correlated with the number of larvae measured by microscopic examination. The method could be applied to quantify barnacle larvae in natural plankton samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号