首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
When humans wish to move sideways, they almost never walk sideways, except for a step or two; they usually turn and walk facing forward. Here, we show that the experimental metabolic cost of walking sideways, per unit distance, is over three times that of forward walking. We explain this high metabolic cost with a simple mathematical model; sideways walking is expensive because it involves repeated starting and stopping. When walking sideways, our subjects preferred a low natural speed, averaging 0.575 m s−1 (0.123 s.d.). Even with no prior practice, this preferred sideways walking speed is close to the metabolically optimal speed, averaging 0.610 m s−1 (0.064 s.d.). Subjects were within 2.4% of their optimal metabolic cost per distance. Thus, we argue that sideways walking is avoided because it is expensive and slow, and it is slow because the optimal speed is low, not because humans cannot move sideways fast.  相似文献   

7.
8.
The ability to examine epigenetic mechanisms in the brain has become readily available over the last 20 years. This has led to an explosion of research and interest in neural and behavioral epigenetics. Of particular interest to researchers, and indeed the lay public, is the possibility that epigenetic processes, such as changes in DNA‐methylation and histone modification, may provide a biochemical record of environmental effects. This has led to some fascinating insights into how molecular changes in the brain can control behavior. However, some of this research has also attracted controversy and, as is dealt with here, some overblown claims. This latter problem is partly linked to the shifting sands of what is defined as ‘epigenetics’. In this review, I provide an overview of what exactly epigenetics is, and what is hype, with the aim of opening up a debate as to how this exciting field moves forward.  相似文献   

9.
10.
11.
《Cell reports》2023,42(1):111973
  1. Download : Download high-res image (171KB)
  2. Download : Download full-size image
  相似文献   

12.
Agrin is highly expressed by chondrocytes and is required for normal growth   总被引:1,自引:1,他引:0  
Agrin is a heparan sulfate proteoglycan that is best known for its crucial involvement in the organization and maintenance of postsynaptic structures at the neuromuscular junction. Consistent with this role, mice deficient of agrin die at birth due to respiratory failure. Here we examined the early postnatal development of agrin-deficient mice in which perinatal death was prevented by transgenic expression of neural agrin in motor neurons. Such transgenic, agrin-deficient mice were born at Mendelian ratio but exhibited severe postnatal growth retardation. Growth plate morpholgy was markedly altered in these mice, with changes being most prominent in the hypertrophic zone. Compression of this zone was not caused by reduced viability of hypertrophic chondrocytes, as no differences in the apoptosis rates could be observed. Furthermore, deposition of the major cartilage matrix components collagen type II and aggrecan was slightly reduced in these mice. Consistent with a role for agrin in skeletal development, we show for the first time that agrin is highly expressed by chondrocytes and localizes to the growth plate in wild-type mice. Our data show that agrin is expressed in cartilage and that it plays a critical role in normal skeletal growth.  相似文献   

13.
The glycocalyx, and the thicker endothelial surface layer (ESL), are necessary both for endothelial barrier function and for sensing mechanical forces in the adult. The goal of this study is to use a combination of imaging techniques to establish when the glycocalyx and endothelial surface layer form during embryonic development and to determine the biological significance of the glycocalyx layer during vascular development in quail embryos. Using transmission electron microscopy, we show that the glycocalyx layer is present as soon as blood flow starts (14 somites). The early endothelial glycocalyx (14 somites) lacks the distinct hair-like morphology that is present later in development (17 and 25 somites). The average thickness does not change significantly (14 somites, 182nm±33nm; 17 somites, 218±30nm; 25 somites, 212±32nm). The trapping of circulating fluorescent albumin was used to evaluate the development of the ESL. Trapped fluorescent albumin was first observed at 25 somites. In order to assess a functional role for the glycocalyx during development, we selectively degraded luminal glycosaminoglycans. Degradation of hyaluronan compromised endothelial barrier function and prevented vascular remodeling. Degradation of heparan sulfate down regulated the expression of shear-sensitive genes but does not inhibit vascular remodeling. Our findings show that the glycocalyx layer is present as soon as blood flow starts (14 somites). Selective degradations of major glycocalyx components were shown to inhibit normal vascular development, examined through morphology, vascular barrier function, and gene expression.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Chlorophyll is a central player in harvesting light energy for photosynthesis, yet the rate-limiting steps of chlorophyll catabolism and the regulation of the catabolic enzymes remain unresolved. To study the role and regulation of chlorophyllase (Chlase), the first enzyme of the chlorophyll catabolic pathway, we expressed precursor and mature versions of citrus (Citrus sinensis) Chlase in two heterologous plant systems: (1) squash (Cucurbita pepo) plants using a viral vector expression system; and (2) transiently transformed tobacco (Nicotiana tabacum) protoplasts. Expression of full-length citrus Chlase resulted in limited chlorophyll breakdown in protoplasts and no visible leaf phenotype in whole plants, whereas expression of a Chlase version lacking the N-terminal 21 amino acids (ChlaseDeltaN), which corresponds to the mature protein, led to extensive chlorophyll breakdown in both tobacco protoplasts and squash leaves. ChlaseDeltaN-expressing squash leaves displayed a dramatic chlorotic phenotype in plants grown under low-intensity light, whereas under natural light a lesion-mimic phenotype occurred, which was demonstrated to follow the accumulation of chlorophyllide, a photodynamic chlorophyll breakdown product. Full-length and mature citrus Chlase versions were localized to the chloroplast membrane fraction in expressing tobacco protoplasts, where processing of the N-terminal 21 amino acids appears to occur. Results obtained in both plant systems suggest that Chlase functions as a rate-limiting enzyme in chlorophyll catabolism controlled via posttranslational regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号