首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The TaqMan probes that have been long and effectively used in real-time polymerase chain reaction (PCR) may also be used in DNA melting analysis. We studied some factors affecting efficiency of the approach such as (i) number of asymmetric PCR cycles preceding DNA melting analysis, (ii) choice of fluorophores for the multiplex DNA melting analysis, and (iii) choice of sense or antisense TaqMan probes for optimal resolution of wild-type and mutant alleles. We also determined ΔTm (i.e., the temperature shift of a heteroduplex relative to the corresponding homoduplex) as a means of preliminary identification of mutation type. In experiments with serial dilution of mutant KRAS DNA with wild-type DNA, the limit of detection of mutant alleles was 1.5–3.0%. Using DNA from both tumor and formalin-fixed paraffin-embedded tissues, we demonstrated a high efficiency of TaqMan probes in mono- and multiplex mutation scanning of KRAS, NRAS (codons 12, 13, and 61), and BRAF (codon 600) genes. This cost-effective method, which can be applied to practically any mutation hot spot in the human genome, combines simplicity, ease of execution, and high sensitivity—all of the qualities required for clinical genotyping.  相似文献   

2.
Ehlers-Danlos syndrome, vascular type (vEDS) (MIM #130050) is an autosomal dominant disorder caused by type III procollagen gene (COL3A1) mutations. Most COL3A1 mutations are detected by using total RNA from patient-derived fibroblasts, which requires an invasive skin biopsy. High-resolution melting curve analysis (hrMCA) has recently been developed as a post-PCR mutation scanning method which enables simple, rapid, cost-effective, and highly sensitive mutation screening of large genes. We established a hrMCA method to screen for COL3A1 mutations using genomic DNA. PCR primers pairs for COL3A1 (52 amplicons) were designed to cover all coding regions of the 52 exons, including the splicing sites. We used 15 DNA samples (8 validation samples and 7 samples of clinically suspected vEDS patients) in this study. The eight known COL3A1 mutations in validation samples were all successfully detected by the hrMCA. In addition, we identified five novel COL3A1 mutations, including one deletion (c.2187delA) and one nonsense mutation (c.2992C>T) that could not be determined by the conventional total RNA method. Furthermore, we established a small amplicon genotyping (SAG) method for detecting three high frequency coding-region SNPs (rs1800255:G>A, rs1801184:T>C, and rs2271683:A>G) in COL3A1 to differentiate mutations before sequencing. The use of hrMCA in combination with SAG from genomic DNA enables rapid detection of COL3A1 mutations with high efficiency and specificity. A better understanding of the genotype–phenotype correlation in COL3A1 using this method will lead to improve in diagnosis and treatment.  相似文献   

3.
Peptide nucleic acid (PNA) is an artificially synthesized polymer. PNA oligomers show greater specificity in binding to complementary DNAs. Using this PNA, fluorescence melting curve analysis (FMCA) for dual detection was established. Genomic DNA of Mycoplasma fermentans and Mycoplasma hyorhinis was used as a template DNA model. By using one PNA probe, M. fermentans and M. hyorhinis could be detected and distinguished simultaneously in a single tube. The developed PNA probe is a dual‐labeled probe with fluorescence and quencher dye. The PNA probe perfectly matches the M. fermentans 16s rRNA gene, with a melting temperature of 72°C. On the other hand, the developed PNA probe resulted in a mismatch with the 16s rRNA gene of M. hyorhinis, with a melting temperature of 44–45°C. The melting temperature of M. hyorhinis was 27–28°C lower than that of M. fermentans. Due to PNA's high specificity, this larger melting temperature gap is easy to create. FMCA using PNA offers an alternative method for specific DNA detection. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:730–735, 2015  相似文献   

4.
Loh E  Loeb LA 《DNA Repair》2005,4(12):5921-1398
DNA polymerases of the Family A catalyze the addition of deoxynucleotides to a primer with high efficiency, processivity, and selectivity-properties that are critical to their function both in nature and in the laboratory. These polymerases tolerate many amino acid substitutions, even in regions that are evolutionarily conserved. This tolerance can be exploited to create DNA polymerases with novel properties and altered substrate specificities, using rational design and molecular evolution. These efforts have focused mainly on the Family A DNA polymerises -Taq, E. coli Pol I, and T7 - because they are widely utilized in biotechnology today. The redesign of polymerases often requires knowledge of the function of specific residues in the protein, including those located in six evolutionarily conserved regions. The most well characterized of these are motifs A and B, which regulate the fidelity of replication and the incorporation of nucleotide analogs such as dideoxynucleotides. Regions that remain to be more thoroughly characterized are motif C, which is critical for catalysis, and motifs 1, 2 and 6, all of which bind to DNA primer or template. Several recently identified mutants with abilities to incorporate nucleotides with bulky adducts have mutations that are not located within conserved regions and warrant further study. Analysis of these mutants will help advance our understanding of how DNA polymerases select bases with high fidelity.  相似文献   

5.
Spectral analysis for base composition of DNA undergoing melting   总被引:1,自引:0,他引:1  
A microcomputer-controlled spectrophotometer is described for obtaining the base composition of melting domains in DNA from derivative melting curves. Values have been determined for the differential molar extinction coefficients for the A-T and G-C base pair at the three wavelengths most useful for spectral analysis of base composition, 260, 270 and 282 nm. The average RMS error for these values was 29 l(mol X cm)-1 for the melting of 14 DNA specimens ranging in base composition from 0-0.72 F(G + C). A precision of approximately 1% in base composition of domains is possible. Such analysis is useful for confirming or establishing assignments of domains to particular subtransitional features in high resolution melting curves.  相似文献   

6.
The Poland–Fixman–Freire formalism was adapted for modeling of calorimetric DNA melting profiles, and applied to plasmid pBR 322 and long random sequences. We studied the influence of the difference (HGC?HAT) between the helix‐coil transition enthalpies of AT and GC base pairs on the calorimetric melting profile and on normalized calorimetric melting profile. A strong alteration of DNA calorimetrical profile with HGC?HAT was demonstrated. In contrast, there is a relatively slight change in the normalized profiles and in corresponding ordinary (optical) normalized differential melting curves (DMCs). For fixed HGC?HAT, the average relative deviation (S) between DMC and normalized calorimetric profile, and the difference between their melting temperatures (Tcal?Tm) are weakly dependent on peculiarities of the multipeak fine structure of DMCs. At the same time, both the deviation S and difference (Tcal?Tm) enlarge with the temperature melting range of the helix‐coil transition. It is shown that the local deviation between DMC and normalized calorimetric profile increases in regions of narrow peaks distant from the melting temperature.  相似文献   

7.
We demonstrate that differential scanning calorimetry (DSC) can be used to yield high‐resolution melting profiles for DNA plasmids that agree in all major features with the corresponding plasmid melting profiles derived using more traditional optical techniques. We further demonstrate that by combining information derived from both calorimetric and optical melting profiles one can glean insights that are unavailable from either melting curve alone. By using both optical and calorimetric observables, we show how one can resolve, identify, and measure the thermodynamic properties of particular sequences/domains of interest within a plasmid. We also show that complementary DSC and optical melting studies on plasmids with and without specifically designed inserts can provide fundamental advantages over the corresponding melting studies on other model system constructs for thermodynamically characterizing nucleic acid sequences/structures. © 1999 John Wiley & Sons, Inc. Biopoly 50: 303–318, 1999  相似文献   

8.
Single nucleotide polymorphisms (SNPs) are important diagnostic markers for the detection and differentiation of Bacillus anthracis. High-Resolution Melting (HRM) and Melting Temperature (Tm)-shift methods are two approaches that enable SNP detection without the need for expensive labeled probes. We evaluated the potential diagnostic capability of those methods to discriminate B. anthracis from the other members of the B. cereus group. Two assays targeting B. anthracis-specific SNPs in the plcR and gyrA genes were designed for each method and used to genotype a panel of 155 Bacilli strains. All B. anthracis isolates (n = 65) were correctly and unambiguously identified. Assays also proved to be appropriate for the direct genotyping of biological samples. They could reliably detect B. anthracis in contaminated organs containing as little as 103 CFU/ml, corresponding to a few genome equivalents per reaction. The HRM and Tm-shift applications described here represent valuable tools for specific identification of B. anthracis at reduced cost.  相似文献   

9.
Marfan syndrome has been associated with approximately 562 mutations in the fibrillin-1 (FBN1) gene. Mutation scanning of the FBN1 gene with DNA direct sequencing is time-consuming and expensive because of its large size. This study analyzed the diagnostic value of high-resolution melting analysis as an alternative method for scanning of the FBN1 gene. A total of 75 polymerase chain reaction (PCR) amplicons (179-301 bp, average 256 bp) that covered the complete coding regions and splicing sites were evaluated on the 96-well LightCycler system. Melting curves were analyzed as fluorescence derivative plots (−dF/dT vs. temperature). To determine the sensitivity of this method, a total of 82 samples from patients with Marfan syndrome and 50 unaffected individuals were analyzed. All mutations reported in this study had been confirmed previously by direct sequencing analysis. Melting analysis identified 48 heterozygous variants. The variant c.3093 G>T (exon 25) was incorrectly identified by melting curve analysis. The sensitivity of the technique in this sample was 98.78% (81/82). This study demonstrated that high-resolution melting analysis is a reliable gene scanning method with greater speed than DNA sequencing. Our results support the use of this technology as an alternative method for the diagnosis of Marfan syndrome as well as its suitability for high-throughput mutation scanning of other large genes.  相似文献   

10.
The detection of foodborne microorganisms has traditionally been done using microbiologically based methods. Such “gold standard” methods are generally reliable but have the disadvantages of being labor intensive, subjective, and time consuming. Over the last several years, the development of DNA probe-based methods has simplified the methods used to detect organisms such asSalmonella, Listeria, andE. coli by targeting the unique DNA or RNA sequences of these organisms using DNA probes and nonradioactive detection.  相似文献   

11.
The evolution of larval head morphology in holometabolous insects is characterized by reduction of antennal appendages and the visual system components. Little insight has been gained into molecular developmental changes underlying this morphological diversification. Here we compare the expression of the segment polarity gene wingless (wg) in the pregnathal head of fruit fly, flour beetle and grasshopper embryos. We provide evidence that wg activity contributes to segment border formation, and, subsequently, the separation of the visual system and protocerebrum anlagen in the anterior procephalon. In directly developing insects like grasshopper, seven expression domains are formed during this process. The activation of four of these, which correspond to polar expression pairs in the optic lobe anlagen and the protocerebral ectoderm, has shifted to postembryonic stages in flour beetle and Drosophila. The remaining three domains map to the protocerebral neuroectoderm, and form by disintegration of a large precursor domain in flour beetle and grasshopper. In Drosophila, the precursor domain remains intact, constituting the previously described “head blob”. These data document major changes in the expression of an early patterning gene correlated with the dramatic evolution of embryonic visual system development in the Holometabola.  相似文献   

12.
Previous fluorescence melting curve analysis (FMCA) used intercalating dyes, and this method has restricted application. Therefore, FMCA methods such as probe-based FMCA and molecular beacons were studied. However, the usual dual-labeled probes do not possess adequate fluorescence quenching ability and sufficient specificity, and molecular beacons with the necessary stem structures are hard to design. Therefore, we have developed a peptide nucleic acid (PNA)-based FMCA method. PNA oligonucleotide can have a much higher melting temperature (Tm) value than DNA. Therefore, short PNA probes can have adequate Tm values for FMCA, and short probes can have higher specificity and accuracy in FMCA. Moreover, dual-labeled PNA probes have self-quenching ability via single-strand base stacking, which makes PNA more favorable. In addition, this method can facilitate simultaneous identification of multiple DNA templates. In conventional real-time polymerase chain reaction (PCR), one fluorescence channel can identify only one DNA template. However, this method uses two fluorescence channels to detect three types of DNA. Experiments were performed with one to three different DNA sequences mixed in a single tube. This method can be used to identify multiple DNA sequences in a single tube with high specificity and high clarity.  相似文献   

13.
A DNA hybridization assay was developed in microtiter plate format to detect the presence of toxic dinoflagellates in coastal waters. Simultaneous detection of multiple species was demonstrated using Karenia brevis, Karenia mikimotoi, and Amphidinium carterae. Molecular probes were designed to detect both K. brevis and K. mikimotoi and to distinguish between these two closely related species. The assay was used to detect K. brevis in coastal waters collected from the Rookery Bay National Estuarine Research Reserve. Assay results were verified by species-specific PCR and sequence analysis. The presence/absence of K. brevis was consistent with microscopic observation. Assay sensitivity was sufficient to detect K. brevis in amounts defined by a regional monitoring program as “present” (≤1000 cells/L). The assay yielded quick colorimetric results, used a single hybridization temperature, and conserved the amount of genomic DNA utilized by employing one set of PCR primers. The microplate assay provides a useful tool to quickly screen large sample sets for multiple target organisms.  相似文献   

14.
The mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) method is one of the most important methods that have been used in recent years for genotyping Mycobacterium tuberculosis. Agarose gel electrophoresis and capillary electrophoresis have been used to determine the size of amplicons, however, both of these methods have shortcomings. Here, we develop and evaluate a novel method for MIRU-VNTR typing based on high resolution melting (HRM) analysis. The MIRU40 locus was selected to evaluate different real-time PCR machines and the accuracy of our method; the Roche LightCycler 480 provided greatest consistency between the Tm value and repeat number and was used in subsequent evaluations. Our method gives greater accuracy in comparison with conventional agarose gel electrophoresis (98.9% vs. 90.9%, p = 0.017), and, with the help of fitting formulae, can be used to obtain the number of MIRU tandem repeats from the Tm value. To validate our method we analyzed 12 classical MIRU loci to genotype 88 clinical isolates. The number of MIRU tandem repeats was determined accurately, quickly and conveniently.  相似文献   

15.
Lee K  Kim K 《Biotechnology letters》2003,25(20):1739-1742
A simple and quick colorimetric method for confirming DNA amplification in polymerase chain reactions (PCR) is described and has been applied to the amplification of Giardia lamblia DNA. This method detects the release of pyrophosphate based on the competition between 1,10-phenanthroline and pyrophosphate complexing with ferrous ion. When 1,10-phenanthroline complexed with Fe2+ is added to the finished PCR solution, depending on whether or not the DNA was amplified, the mixture is, respectively, either bleached or red. The color changed optimally for 20–30 min at 60–80 °C, and the result could be determined by detecting an absorbancy change at 510 nm or a color change discernible to the naked eye. The extent of change in absorbance was proportional to the amount of pyrophosphate produced.  相似文献   

16.
17.
An understanding of gene function often relies upon creating multiple kinds of alleles. Functional analysis in Candida albicans, a major fungal pathogen, has generally included characterization of mutant strains with insertion or deletion alleles and over-expression alleles. Here we use in C. albicans another type of allele that has been employed effectively in the model yeast Saccharomyces cerevisiae, a "Decreased Abundance by mRNA Perturbation" (DAmP) allele (Yan et al., 2008). DAmP alleles are created systematically through replacement of 30 noncoding regions with nonfunctional heterologous sequences, and thus are broadly applicable. We used a DAmP allele to probe the function of Sun41, a surface protein with roles in cell wall integrity, cell-cell adherence, hyphal formation, and biofilm formation that has been suggested as a possible therapeutic target (Firon et al., 2007; Hiller et al., 2007; Norice et al., 2007). A SUN41-DAmP allele results in approximately 10-fold reduced levels of SUN41 RNA, and yields intermediate phenotypes in most assays. We report that a sun41Δ/Δ mutant is defective in biofilm formation in vivo, and that the SUN41-DAmP allele complements that defect. This finding argues that Sun41 may not be an ideal therapeutic target for biofilm inhibition, since a 90% decrease in activity has little effect on biofilm formation in vivo. We anticipate that DAmP alleles of C. albicans genes will be informative for analysis of other prospective drug targets, including essential genes.  相似文献   

18.
Summary Total genomic DNAs ofFrankia isolates were subjected to restriction enzyme digestion and subsequent agarose gel electrophoresis. Restriction fragment banding patterns were unique for each isolate and may therefore be used as a method to distinguish between isolates which may be morphologically indistinguishable. This method might be useful for practical purposes such as tracing specificFrankia strains during field studies.  相似文献   

19.
Following the initial report of the use of SYBR Green I for real-time polymerase chain reaction (PCR) in 1997, little attention has been given to the development of alternative intercalating dyes for this application. This is surprising considering the reported limitations of SYBR Green I, which include limited dye stability, dye-dependent PCR inhibition, and selective detection of amplicons during DNA melting curve analysis of multiplex PCRs. We have tested an alternative to SYBR Green I and report the first detailed evaluation of the intercalating dye SYTO9. Our findings demonstrate that SYTO9 produces highly reproducible DNA melting curves over a broader range of dye concentrations than does SYBR Green I, is far less inhibitory to PCR than SYBR Green I, and does not appear to selectively detect particular amplicons. The low inhibition and high melting curve reproducibility of SYTO9 means that it can be readily incorporated into a conventional PCR at a broad range of concentrations, allowing closed tube analysis by DNA melting curve analysis. These features simplify the use of intercalating dyes in real-time PCR and the improved reproducibility of DNA melting curve analysis will make SYTO9 useful in a diagnostic context.  相似文献   

20.
The utility of formamide in the denaturation and renaturation of DNA has been examined. The melting temperature of duplex DNA is lowered by 0·6°C per per cent formamide. The depression of melting temperature is independent of the GC content. Formamide also increases the width of the thermal transition. Upto 30%, it does not affect the rate of DNA reassociation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号