首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The products of nonenzymatic glycation of proteins are formed in a chemical reaction between reducing sugars and the free amino group located either at the N terminus of the polypeptide chain or in the lysine side chain. Glycated proteins and their fragments could be used as markers of the aging process as well as diabetes mellitus and Alzheimer’s disease, making them an object of interest in clinical chemistry. In this article, we propose a new method for the identification of peptide-derived Amadori products in the mixtures obtained by enzymatic hydrolysis of glycated proteins. Two proteins, ubiquitin and human serum albumin (HSA), were modified with an equimolar mixture of glucose and [13C6]glucose and were subjected to enzymatic hydrolysis. The obtained enzymatic digests were analyzed by high-resolution mass spectrometry (HRMS), and the peptide-derived Amadori products were identified on the basis of specific isotopic patterns resulting from 13C substitution. The number of glycated peptides in the digest of HSA detected by our procedure was in agreement with the data recently reported in the literature.  相似文献   

2.
Measurements were made of the concentration and stable oxygen isotopic ratio of carbon dioxide in air samples collected on a diurnal basis at two heights within a Pinus resinosa canopy. Large changes in CO2 concentration and isotopic composition were observed during diurnal time courses on all three symple dates. In addition, there was strong vertical stratification in the forest canopy, with higher CO2 concentrations and more negative 18O values observed closer to the soil surface. The observed daily increases in 18O values of forest CO2 were dependent on relative humidity consistent with the modelled predictions of isotopic fractionation during photosynthetic gas exchange. During photosynthetic gas exchange, a portion of the CO2 that enters the leaf and equilibrates with leaf water is not fixed and diffuses back out of the leaf with an altered oxygen isotopic ratio. The oxygen isotope ratio of CO2 diffusing out of a leaf depends primarily on the 18O content of leaf water which changes in response to relative humidity. In contrast, soil respiration caused a decline in the 18O values of forest CO2 at night, because CO2 released from the soil has equilibrated with soil water which has a lower 18O content than leaf water. The observed relationship between diurnal changes in CO2 concentration and oxygen isotopic composition in the forest environment were consistent with a gas mixing model that considered the relative magnitudes of CO2 fluxes associated with photosynthesis, respiration and turbulent exchange between the forest and the bulk atmosphere.  相似文献   

3.

Background

Hydrogen/deuterium exchange (HDX) coupled to mass spectrometry permits analysis of structure, dynamics, and molecular interactions of proteins. HDX mass spectrometry is confounded by deuterium exchange-associated peaks overlapping with peaks of heavy, natural abundance isotopes, such as carbon-13. Recent studies demonstrated that high-performance mass spectrometers could resolve isotopic fine structure and eliminate this peak overlap, allowing direct detection and quantification of deuterium incorporation.

Results

Here, we present a graphical tool that allows for a rapid and automated estimation of deuterium incorporation from a spectrum with isotopic fine structure. Given a peptide sequence (or elemental formula) and charge state, the mass-to-charge ratios of deuterium-associated peaks of the specified ion is determined. Intensities of peaks in an experimental mass spectrum within bins corresponding to these values are used to determine the distribution of deuterium incorporated. A theoretical spectrum can then be calculated based on the estimated distribution of deuterium exchange to confirm interpretation of the spectrum. Deuterium incorporation can also be detected for ion signals without a priori specification of an elemental formula, permitting detection of exchange in complex samples of unidentified material such as natural organic matter. A tool is also incorporated into QUDeX-MS to help in assigning ion signals from peptides arising from enzymatic digestion of proteins. MATLAB-deployable and standalone versions are available for academic use at qudex-ms.sourceforge.net and agarlabs.com.

Conclusion

Isotopic fine structure HDX-MS offers the potential to increase sequence coverage of proteins being analyzed through mass accuracy and deconvolution of overlapping ion signals. As previously demonstrated, however, the data analysis workflow for HDX-MS data with resolved isotopic fine structure is distinct. QUDeX-MS we hope will aid in the adoption of isotopic fine structure HDX-MS by providing an intuitive workflow and interface for data analysis.  相似文献   

4.
Asparagine (Asn) deamidation and aspartic acid (Asp) isomerization are spontaneous and common alterations occurring in pharmaceutical protein drugs in solution. Because those reactions may cause functional changes, it is important to identify the product-related substances, especially when biopharmaceuticals are under development. In this study, we used H(2)(18)O to identify Asn deamidation and Asp isomerization sites on a recombinant humanized monoclonal antibody (mAb) by using high-performance liquid chromatography-mass spectrometry (HPLC-MS). This strategy takes advantage of reactions whereby (18)O is incorporated into the protein molecule. The mAb was lyophilized and reconstituted in H(2)O or H(2)(18)O, followed by incubation at 50 degrees C for 1 month. Samples were reduced/carboxymethylated and digested by trypsin and then subjected to HPLC-MS and HPLC-tandem mass spectrometry (MS/MS) analysis. Among all of the peptide fragments analyzed, there were two in which deamidation and/or isomerization was observed. In one peptide fragment, an obvious mass shift ( approximately 3Da) at Asn was observed in the newly produced peptide when the mAb was incubated in H(2)(18)O, whereas it was barely feasible to identify this mass shift in H(2)O. In the other peptide fragment, isomerization of Asp was identified after incubation in H(2)(18)O, although it was impossible to distinguish when using H(2)O. By means of this procedure, identification of deamidation and isomerization sites can be accomplished easily even when they are difficult or impossible to detect by the usual peptide mapping.  相似文献   

5.
KH2PO4 labelled with18O and32P was mixed with soil that was placed in pots in which grass seed was sown. Grass samples were taken after 5, 7, and 12 weeks. The dilution factor (DF) for18O in the first cut was much greater than the DF for32P, indicating that the bulk of the18O in the absorbed phosphate was lost. The DFs for18O and32P determined in phosphate extracted from the soil at the end of the pot experiment indicated that half the18O excess in the applied phosphate was lost.A succeeding experiment showed no loss of18O when the treated soil was shaken for 3 months with water to which a germicide was added. Thus, the loss of18O was presumably caused by biochemical processes which brought about the replacement of18O by16O. We suggest that the loss of18O from applied labelled phosphate may be used as a measure of biological activity in soil.  相似文献   

6.
Summary The nature of the products arising from a 10 days, sterile incubation at 37°C and pH 7.2 of a 1:1 mixture of N--(p-tosyl)-lysine-methylesterhydrochloride and anhydrous D-glucose was investigated by fast atom bombardment mass spectrometry and1H and13C nuclear magnetic resonance spectroscopies. Differently to the reactivity usually described on the basis of other analytical techniques, FAB mass spectrometric measurements indicate the occurrence of the reaction of protected lysine with more than one D-glucose molecule.  相似文献   

7.
With the increasing use of capillary electrophoresis (CE) in the biotechnology industry, there is a demand for analytical tools and methodology that can be used to characterize CE profiles. This article describes the implementation and optimization of a robust online CE-mass spectrometry (CE-MS) system used for the characterization of several CE assays developed at Genentech Inc. These assays include CE as a complement to reverse-phase peptide mapping for the identification of small peptides eluting in the void volume, profiling N-linked glycopeptide heterogeneity, and determining O-linked site occupancy. In addition, CE-MS was used to confirm major 8-aminopyrene-1,3,6-trisulfonate (APTS)-labeled glycans released from recombinant antibodies that are routinely profiled by CE-laser-induced fluorescence (CE-LIF). For each study, CE-MS was able to successfully identify components seen in UV or LIF electropherograms, thereby expanding the capability of CE and CE-MS for profiling biomolecules.  相似文献   

8.
A method for efficient isotopic labeling of recombinant proteins   总被引:15,自引:0,他引:15  
A rapid and efficient approach for preparing isotopically labeled recombinant proteins is presented. The method is demonstrated for 13C labeling of the C-terminal domain of angiopoietin-2, 15N labeling of ubiquitin and for 2H/13C/15N labeling of the Escherichia coli outer-membrane lipoprotein Lpp-56. The production method generates cell mass using unlabeled rich media followed by exchange into a small volume of labeled media at high cell density. Following a short period for growth recovery and unlabeled metabolite clearance, the cells are induced. The expression yields obtained provide a fourfold to eightfold reduction in isotope costs using simple shake flask growths.  相似文献   

9.
The ability to determine conformational parameters of protein-folding landscapes is critical for understanding the link between conformation, function, and disease. Monitoring hydrogen exchange (HX) of labile protons at equilibrium enables direct extraction of thermodynamic or kinetic landscape parameters in two limiting extremes. Here, we establish a quantitative framework for relating HX behavior to landscape. We use this framework to demonstrate that the range of predicted global HX behavior for the majority of a set of characterized two-state proteins under near-native conditions does not readily span between both extremes. For most, stability may be quantitatively determined under physiological conditions, with semiquantitative boundaries on kinetics additionally determined using modest experimental perturbations to shift HX behavior. The framework and relationships derived in the simple context of two-state global folding highlight the importance of understanding HX across the entire continuum of behavior, in order to apply HX to map landscapes.  相似文献   

10.
Trypsin-catalyzed 18O labeling is increasingly used in shotgun proteomics for relative peptide/protein quantitation. However, precise quantitative measurements are often complicated by the instability of 18O-labeled peptides caused mainly by oxygen back-exchange. Although a number of attempts have been made to reduce or prevent oxygen back-exchange, there is still room for improvement. Here we demonstrate that the removal of immobilized trypsin by filtration using ZipTips can efficiently minimize oxygen back-exchange and enhance the stability of 18O-labeled peptides under various pH conditions. The 18O-labeled peptides processed by the approach were successfully separated by immobilized pH gradient–isoelectric focusing (IPG–IEF), and no marked decrease in the extent of labeling was observed. The results also demonstrated that there was no correlation between the extent of 18O labeling and molecular weight or isoelectric point (pI). The approach presented here is especially applicable to microscale samples. Its ability to generate stably 18O-labeled samples without back-exchange should expand the application scope of the 18O-labeling technique.  相似文献   

11.
Summary The role of transmembrane pH gradients on the ouabain, bumetanide and phloretin-resistant Na+ transport was studied in human red cells. Proton equilibration through the Jacobs-Stewart cycle was inhibited by the use of DIDS (125 m) and methazolamide (400 m). Red cells with different internal pH (pH i =6.4, 7.0 and 7.8) were prepared and Na+ influx was measured at different external pH (pH o =6.0, 7.0, 8.0). Na+ influx into acid-loaded cells (pH i =6.4) markedly increased when pH o was raised from 6.0 to 8.0. Amiloride, a well-known inhibitor of Na+/H+ exchange systems blocked about 60% of the H+-induced Na+ entry, while showing small inhibitory effects in the absence of pH gradients. When pH0 was kept at 8.0, the amiloride-sensitive Na+ entry was abolished as pH i was increased from 6.4 to 7.8. Moreover, measurements of H+ efflux into lightly buffered media indicated that the imposition of an inward Na+ gradient stimulated a net H+ efflux which was sensitive to the amiloride analog 5-N-methyl-N-butyl-amiloride. Furthermore, in the absence of a chemical gradient for Na+ (Na i + =Na 0 + =15mm,Em=+6.7 mV), an outward H+ gradient (pH i =6.4, pH0=8.0) promoted a net amiloride-sensitive Na+ uptake which was abolished at an external pH of 6.0. These findings are consistent with the presence of an amiloride-sensitive Na+/H+ exchange system in human red cells.  相似文献   

12.
18 O isotope exchange measurements of photosystem II (PSII) in thylakoids from wild-type and mutant Synechocystis have been performed to investigate binding of substrate water to the high-affinity Mn4 site in the oxygen-evolving complex (OEC). The mutants investigated were D1-D170H, a mutation of a direct ligand to the Mn4 ion, and D1-D61N, a mutation in the second coordination sphere. The substrate water 18 O exchange rates for D61N were found to be 0.16+/-0.02 s(-1) and 3.03+/-0.32 s(-1) for the slow and fast phases of exchange, respectively, compared with 0.47+/-0.04 s(-1) and 19.7+/-1.3 s(-1) for the wild-type. The D1-D170H rates were found to be 0.70+/-0.16 s(-1) and 24.4+/-4.6 s(-1) and thus are almost within the error limits for the wild-type rates. The results from the D1-D170H mutant indicate that the high-affinity Mn4 site does not directly bind to the substrate water molecule in slow exchange, but the binding of non-substrate water to this Mn ion cannot be excluded. The results from the D61N mutation show an interaction with both substrate water molecules, which could be an indication that D61 is involved in a hydrogen bonding network with the substrate water. Our results provide limitations as to where the two substrate water molecules bind in the OEC of PSII.  相似文献   

13.
Isotope fractionation is a powerful technique by which to probe the reaction mechanism of enzymes. The effect of a heavy isotope on the reaction energetics can be used to predict transition state architecture and reaction mechanism. In order to examine simultaneously the isotope fractionation in 13C at multiple sites within the substrate and product molecules without any need for site-selective isotope enrichment, a technique exploiting quantitative isotopic nuclear magnetic resonance (NMR) spectrometry at natural abundance (NAQ–NMR) has been developed. Here we report the first application of this technique to the study of an enzyme-catalyzed reaction, the bioconversion of ferulic acid to vanillin in cultures of Streptomyces setonii. We were able to show that the NAQ–NMR methodology is sufficiently precise and robust to measure the isotope shifts in the 13C/12C ratios in both substrate and product of this biotransformation, thereby permitting meaningful data to be obtained even at carbon positions that take part only indirectly in the reaction and show only secondary isotope fractionation. The results obtained provide direct evidence in support of the current hypothesis for the reaction mechanism of the enzyme hydroxycinnamoyl–CoA hydratase/lyase, notably the proposed involvement of the quinone methide enolate of feruloyl–CoA as intermediate in the catalytic pathway.  相似文献   

14.
Exchange between protein backbone amide hydrogen and water gives relevant information about solvent accessibility and protein secondary structure stability. NMR spectroscopy provides a convenient tool to study these dynamic processes with saturation transfer experiments. Processing of this type of NMR spectra has traditionally required peak integration followed by exponential fitting, which can be tedious with large data sets. We propose here a computer-aided method that applies inverse Laplace transform in the exchange rate measurement. With this approach, the determination of exchange rates can be automated, and reliable results can be acquired rapidly without a need for manual processing.  相似文献   

15.
Summary In separated outer medullary collecting duct (MCD) cells, the time course of binding of the fluorescent stilbene anion exchange inhibitor, DBDS (4,4-dibenzamido-2,2-stilbene disulfonate), to the MCD cell analog of band 3, the red blood cell (rbc) anion exchange protein, can be measured by the stopped-flow method and the reaction time constant, DBDS, can be used to report on the conformational state of the band 3 analog. In order to validate the method we have now shown that the ID50,DBDS,MCD (0.5±0.1 m) for the H2-DIDS (4,4-diisothiocyano-2,2-dihydrostilbene disulfonate) inhibition of DBDS is in agreement with the ID50,Cl ,MCD (0.94±0.07 m) for H2-DIDS inhibition of MCD cell Cl flux, thus relating DBDS directly to anion exchange. The specific cardiac glycoside cation transport inhibitor, ouabain, not only modulates DBDS binding kinetics, but also increases the time constant for Cl exchange by a factor of two, from Cl=0.30±0.02 sec to 0.56±0.06 sec (30mm NaHCO3). The ID50,DBDS,MCD for the ouabain effect on DBDS binding kinetics is 0.003±0.001 m, so that binding is about an order of magnitude tighter than that for inhibition of rbc K+ flux (K I,K +,rbc=0.017 m). These experiments indicate that the Na+,K-ATPase, required to maintain cation gradients across the MCD cell membrane, is close enough to the band 3 analog that conformational information can be exchanged. Cytochalasin E (CE), which binds to the spectrin/actin complex in rbc and other cells, modulates DBDS binding kinetics with a physiological ID50,DBDS,MCD (0.076±0.005 m); 2 m CE also more than doubles the Cl exchange time constant from 0.20±0.04 sec to 0.50±0.08 sec (30mm NaHCO3). These experiments indicate that conformational information can also be exchanged between the MCD cell band 3 analog and the MCD cell cytoskeleton.  相似文献   

16.
Glycation of proteins, a common postribosomal modification, proceeds via Amadori rearrangement to yield a stable ketoamine linkage of glucose with the protein. Kinetic analysis of the reaction shows that the amount of glycation at steady state is proportional to the glucose concentration, to protein half-life and to the rate of glycation. Thus, when the rate of glycation is determined in vitro and the extent of glycation of a given protein isolated from euglycemic subjects is measured, the half-life may be calculated. As the in vivo situation may not be simulated accurately in vitro, the calculated values may be considered as approximation. When the calculated values were compared with values reported in the literature fairly good agreement was found except for hemoglobin. Studies on stability of glycated albumin show that ketoamine decreases by about 20% when incubated under physiological conditions for 20 days. The method described by us is especially valuable when turnover of proteins in normal and pathophysiological states are compared. The half-life of plasma low-density lipoprotein is longer in patients with hypothyroidism or a high plasma low-density lipoprotein level than in normal subjects. Extending our studies to tissue proteins we did not find a significant increase in half-life of tendon collagen with age. Basement membrane collagen turnover is faster in diabetic patients in bad metabolic control. Thus, the procedure using fructosylamine as endogenous label of protein offers a method of great potential to study the turnover of human body proteins.  相似文献   

17.
Based on the relationship between salinity and δ18O and δ13C of modern shells in the Lake Nakaumi-Shinji lagoon system (southwestern Japan), where the salinity changes regularly from ca. 1 PSU to 34 PSU, a paleosalinity record for Nakaumi Lagoon during the Holocene has been derived from bulk mollusk shell δ18O and δ13C data. The robust relationships between the salinity and modern shell δ18Oar and δ13Car (aragonite) were used to calibrate the paleosalinity reconstruction. The salinity relationships are expressed by the regressions:
Salinity (PSU)=3.86 δ18Oar(‰ VPDB)+33.9 (n=18, r=0.978)  相似文献   

18.
《Inorganica chimica acta》2007,360(9):2973-2982
Syntheses and crystal structures of two molecular, heteroleptic cadmium complexes with CdS2NO2 and CdS2N2 kernels are described. Bis(tri-tert-butoxysilanethiolate)(1-methylimidazole)cadmium(II) and bis(tri-tert-butoxysilanethiolate)bis(1-methylimidazole)cadmium(II) coexist at equilibrium in chloroform solutions with varying concentrations of bis[bis(tri-tert-butoxysilanethiolate)cadmium(II)] and 1-methylimidazole. The equilibrium is characterized by solution 113Cd NMR spectra. Solid state CP MAS 13C, 29Si, 113Cd NMR data for the complexes are also reported, analyzed and compared with the results obtained for cadmium-substituted proteins. The similarities and differences between the structures of cadmium complexes and their zinc analogues are discussed.  相似文献   

19.
Whole-cell matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a rapid method for identification of microorganisms that is increasingly used in microbiology laboratories. This identification is based on the comparison of the tested isolate mass spectrum with reference databases. Using Neisseria meningitidis as a model organism, we showed that in one of the available databases, the Andromas database, 10 of the 13 species-specific biomarkers correspond to ribosomal proteins. Remarkably, one biomarker, ribosomal protein L32, was subject to inter-strain variability. The analysis of the ribosomal protein patterns of 100 isolates for which whole genome sequences were available, confirmed the presence of inter-strain variability in the molecular weight of 29 ribosomal proteins, thus establishing a correlation between the sequence type (ST) and/or clonal complex (CC) of each strain and its ribosomal protein pattern. Since the molecular weight of three of the variable ribosomal proteins (L30, L31 and L32) was included in the spectral window observed by MALDI-TOF MS in clinical microbiology, i.e., 3640–12000 m/z, we were able by analyzing the molecular weight of these three ribosomal proteins to classify each strain in one of six subgroups, each of these subgroups corresponding to specific STs and/or CCs. Their detection by MALDI-TOF allows therefore a quick typing of N. meningitidis isolates.  相似文献   

20.
The cytoplasmic pH undergoes a biphasic change when neutrophils are activated. The role of Ca2+ in initiating these changes was investigated. No correlation was found between the increased cytosolic [Ca2+] and the stimulation of the Na+/H+ antiport. Similarly, the cytoplasmic acidification elicited by activation in Na+-free media was found to be unrelated to [Ca2+]. Reversal of Na+/H+ exchange was also ruled out as the source of the acidification. Data using a variety of soluble activators indicate that metabolic acid generation is largely responsible for the observed drop in cytoplasmic pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号