首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Little is known about the regulation of endogenous CoQ(10) levels in response to mitochondrial dysfunction or oxidative stress although exogenous CoQ(10) has been extensively used in humans. In this study, we first demonstrated that acute treatment of antimycin A, an inhibitor of mitochondrial complex III, and the absence of mitochondrial DNA suppressed CoQ(10) levels in human 143B cells. Because these two conditions also enhanced formation of reactive oxygen species (ROS), we further investigated whether oxidative stress or mitochondrial dysfunction primarily contributed to the decrease of CoQ(10) levels. Results showed that H(2)O(2) augmented CoQ(10) levels, but carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), a chemical uncoupler, decreased CoQ(10) levels in 143B cells. However, H(2)O(2) and FCCP both increased mRNA levels of multiple COQ genes for biosynthesis of CoQ(10) . Our findings suggest that ROS induced CoQ(10) biosynthesis, whereas mitochondrial energy deficiency caused secondary suppression of CoQ(10) levels possibly due to impaired import of COQ proteins into mitochondria.  相似文献   

2.
Electromagnetic fields (EMFs) are reported to interfere with chemical reactions involving free radical production. Coenzyme Q10 (CoQ10) is a strong antioxidant with some neuroprotective activities. The purpose of this study was to examine and compare the neuroprotective effects of EMF and CoQ10 in a mouse model of hippocampal injury. Hippocampal injury was induced in mature female mice (25–30 g), using an intraperitoneal injection of trimethyltin hydroxide (TMT; 2.5 mg/kg). The experimental groups were exposed to EMF at a frequency of 50 Hz and intensity of 5.9 mT for 7 hr daily over 1 week or treated with CoQ10 (10 mg/kg) for 2 weeks following TMT injection. A Morris water maze apparatus was used to assess learning and spatial memory. Nissl staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) tests were also performed for the histopathological analysis of the hippocampus. Antiapoptotic genes were studied, using the Western blot technique. The water maze test showed memory improvement following treatment with CoQ10 and coadministration of CoQ10 + EMF. The Nissl staining and TUNEL tests indicated a decline in necrotic and apoptotic cell count following treatment with CoQ10 and coadministration of CoQ10 + EMF. The Western blot study indicated the upregulation of antiapoptotic genes in treatment with CoQ10, as well as coadministration. Also, treatment with EMF had no significant effects on reducing damage induced by TMT in the hippocampus. According to the results, EMF had no significant neuroprotective effects in comparison with CoQ10 on hippocampal injury in mice. Nevertheless, coadministration of EMF and CoQ10 could improve the neuroprotective effects of CoQ10.  相似文献   

3.
Squalene has been used as a dietary supplement for a long history due to its potential cancer‐preventive function. However, the mechanism has not been investigated in detail yet. Therefore, the aim of this study is to see if the plasma coenzyme Q10 (CoQ10) level will be altered by gavage of squalene and oxidosqualenes to rats. In the present work, a sensitive and simple high‐performance analytical method based on ultra‐high‐performance liquid chromatography coupled with an Orbitrap mass spectrometry (UPLC‐Orbitrap‐MS) was developed for the quantification of CoQ10 in rat plasma. Coenzyme Q9 (CoQ9) was employed as the internal standard. CoQ10 was determined after acetonitrile‐mediated plasma protein precipitation using UPLC‐Orbitrap‐MS in negative ion mode. Intragastric administration of squalene and the two squalene epoxides into rats once daily for several days elevated the level of CoQ10 in their plasma, but there was no significant difference between high‐dose (286 mg/kg) and low‐dose (143 mg/kg) groups. Intragastric administration of squalene once a day for 5 consecutive days and oxidosqualenes once a day for 3 consecutive days is necessary for reaching the steady‐state level of CoQ10. Our present findings indicate that squalene and oxidosqualenes may be useful for stimulating the synthesis of CoQ10 in rats.  相似文献   

4.
There is considerable current interest in coenzyme Q10 (CoQ10) from a medical perspective. CoQ10 has been shown to alleviate the side effects of statin drugs, for instance, and so there is a push to find naturally high producers of the compound. Sporidiobolus johnsonii (S. johnsonii) has been reported to produce CoQ10 in studies that used only standards on thin‐layer chromatography (TLC) and also suggested the production of coenzyme Q9 (CoQ9). This work set out to verify CoQ9/CoQ10 production in S. johnsonii and quantify as appropriate. We show that S. johnsonii produces CoQ10 but found no evidence for CoQ9 biosynthesis. The specific production of CoQ10 was noted at 10 mg/g dry cell weight (DCW) in media supplemented with 4‐hydroxybenzoic acid (HBA). This makes S. johnsonii a naturally high CoQ10 producer. New methods for extraction and purification of CoQ10 are also discussed, and identification of a closely eluting side product under normal phase isolation is reported.  相似文献   

5.
Coenzyme Q10 (CoQ10) or Ubiquinone10 (UQ10), an isoprenylated benzoquinone, is well-known for its role as an electron carrier in aerobic respiration. It is a sole representative of lipid soluble antioxidant that is synthesized in our body. In recent years, it has been found to be associated with a range of patho-physiological conditions and its oral administration has also reported to be of therapeutic value in a wide spectrum of chronic diseases. Additionally, as an antioxidant, it has been widely used as an ingredient in dietary supplements, neutraceuticals, and functional foods as well as in anti-aging creams. Since its limited dietary uptake and decrease in its endogenous synthesis in the body with age and under various diseases states warrants its adequate supply from an external source. To meet its growing demand for pharmaceutical, cosmetic and food industries, there is a great interest in the commercial production of CoQ10. Various synthetic and fermentation of microbial natural producers and their mutated strains have been developed for its commercial production. Although, microbial production is the major industrial source of CoQ10 but due to low yield and high production cost, other cost-effective and alternative sources need to be explored. Plants, being photosynthetic, producing high biomass and the engineering of pathways for producing CoQ10 directly in food crops will eliminate the additional step for purification and thus could be used as an ideal and cost-effective alternative to chemical synthesis and microbial production of CoQ10. A better understanding of CoQ10 biosynthetic enzymes and their regulation in model systems like E. coli and yeast has led to the use of metabolic engineering to enhance CoQ10 production not only in microbes but also in plants. The plant-based CoQ10 production has emerged as a cost-effective and environment-friendly approach capable of supplying CoQ10 in ample amounts. The current strategies, progress and constraints of CoQ10 production in plants are discussed in this review.  相似文献   

6.
CoQ10具有呼吸链电子传递者、抗氧化性、调控基因表达等多种生理生化功能,目前不仅用作药物也用作食品添加剂。微生物发酵法是目前生产CoQ10最有效的方法。本文就有关微生物CoQ合成途径及基于CoQ合成途径的CoQ10生产菌株分子生物学改造的策略与研究进展进行了综述和展望。  相似文献   

7.
Available data on the absorption, metabolism and pharmacokinetics of coenzyme Q10 (CoQ10) are reviewed in this paper. CoQ10 has a fundamental role in cellular bioenergetics. CoQ10 is also an important antioxidant. Because of its hydrophobicity and large molecular weight, absorption of dietary CoQ10 is slow and limited. In the case of dietary supplements, solubilized CoQ10 formulations show enhanced bioavailability. The Tmax is around 6 h, with an elimination half-life of about 33 h. The reference intervals for plasma CoQ10 range from 0.40 to 1.91 μmol/l in healthy adults. With CoQ10 supplements there is reasonable correlation between increase in plasma CoQ10 and ingested dose up to a certain point. Animal data show that CoQ10 in large doses is taken up by all tissues including heart and brain mitochondria. This has implications for therapeutic applications in human diseases, and there is evidence for its beneficial effect in cardiovascular and neurodegenerative diseases. CoQ10 has an excellent safety record.  相似文献   

8.
微生物发酵产辅酶Q10的高速逆流色谱法分离纯化   总被引:1,自引:0,他引:1  
本文首次将高速逆流色谱法应用于微生物发酵液提取物中辅酶Q10的分离纯化,建立了一套可用于其制备分离的逆流色谱溶剂体系正庚烷-乙睛-二氯甲烷(12:7:3.5, v/v/v)。500mg发酵液粗提物经一步制备分离,可得到绝对纯度在98%以上辅酶Q10130mg。比较表明,该方法较传统的硅胶柱层析和结晶相结合的纯化方法在产物纯度、回收率及产率等方面都有一定的优势。  相似文献   

9.
A human replication initiation protein Cdt1 is a very central player in the cell cycle regulation of DNA replication, and geminin down-regulates Cdt1 function by directly binding to it. It has been demonstrated that Cdt1 hyperfunction resulting from Cdt1-geminin imbalance, for example by geminin silencing with siRNA, induces DNA re-replication and eventual cell death in some cancer-derived cell lines. In the present study, we first established a high throughput screening system based on modified ELISA (enzyme linked immunosorbent assay) to identify compounds that interfere with human Cdt1-geminin binding. Using this system, we found that coenzyme Q(10) (CoQ(10)) can inhibit Cdt1-geminin interaction in vitro. CoQ compound is an isoprenoid quinine that functions as an electron carrier in the mitochondrial respiratory chain in eukaryotes. CoQ(10), having a longer isoprenoid chain, was the strongest inhibitor of Cdt1-geminin binding in the tested CoQs, with 50% inhibition observed at concentrations of 16.2 muM. Surface plasmon resonance analysis demonstrated that CoQ(10) bound selectively to Cdt1, but did not interact with geminin. Moreover, CoQ(10) had no influence on the interaction between Cdt1 and mini-chromosome maintenance (MCM)4/6/7 complexes. These results suggested that CoQ(10) inhibits Cdt1-geminin complex formation by binding to Cdt1 and thereby could liberate Cdt1 from inhibition by geminin. Using three-dimensional computer modeling analysis, CoQ(10) was considered to interact with the geminin interaction interface on Cdt1, and was assumed to make hydrogen bonds with the residue of Arg243 of Cdt1. CoQ(10) could prevent the growth of human cancer cells, although only at high concentrations, and it remains unclear whether such an inhibitory effect is associated with the interference with Cdt1-geminin binding. The application of inhibitors for the formation of Cdt1-geminin complex is discussed.  相似文献   

10.
In the present work, Escherichia coli DH5alpha was metabolically engineered for CoQ(10) production by the introduction of decaprenyl diphosphate synthase gene (ddsA) from Agrobacterium tumefaciens. Grown in 2YTG medium (1.6% tryptone, 1% yeast extract, 0.5% NaCl, and 0.5% glycerol) with an initial pH of 7, the recombinant E. coli was capable of CoQ(10) production up to 470 microg/gDCW (dry cell weight). This value could be further elevated to 900 microg/gDCW simply by increasing the initial culture pH from 7 to 9. Supplementation of 4-hydroxy benzoate did not improve the productivity any further. However, engineering of a lower mevalonate semi-pathway so as to increase the isopentenyl diphosphate (IPP) supply of the recombinant strain using exogenous mevalonate efficiently increased the CoQ(10) production. Lower mevalonate semi-pathways of Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, Enterococcus faecalis, and Saccharomyces cerevisiae were tested. Among these, the pathway of Streptococcus pneumoniae proved to be superior, yielding CoQ(10) production of 2,700+/-115 microg/gDCW when supplemented with exogenous mevalonate of 3 mM. In order to construct a complete mevalonate pathway, the upper semi-pathway of the same bacterium, Streptococcus pneumoniae, was recruited. In a recombinant E. coli DH5alpha harboring three plasmids encoding for upper and lower mevalonate semi-pathways as well as DdsA enzyme, the heterologous mevalonate pathway could convert endogenous acetyl-CoA to IPP, resulting in CoQ(10) production of up to 2,428+/-75 microg/gDCW, without mevalonate supplementation. In contrast, a whole mevalonate pathway constructed in a single operon was found to be less efficient. However, it provided CoQ(10) production of up to 1,706+/-86 microg/gDCW, which was roughly 1.9 times higher than that obtained by ddsA alone.  相似文献   

11.
12.
采用以异戊二烯为唯一碳源的选择性平板筛选模型,从钱塘江沿岸杭州市九堡段土壤中新筛选到一株产辅酶Q10的细菌菌株E03,经形态、生理生化、Biolog碳源利用试验和16S rDNA序列分析,确定E03属于鞘氨醇属(Sphingomonas sp.),命名为Sphingomonas sp.ZUTE03.摇瓶试验确定了该菌发酵生产辅酶Q10的最佳碳源为葡萄糖15 g/L,氮源为硫酸铵10 g/L,初始pH8.0,发酵温度25℃,并考察了该菌转化茄尼醇产辅酶Q.0的发酵工艺,以合适溶剂为溶解体系,于发酵培养基中摇床培养12 h后,加入终浓度为0.75 g/L的茄尼醇粗品,转化12 h,辅酶Q10产值可达96.88 mg/L.  相似文献   

13.
Coenzyme Q(10) (CoQ(10)) is an essential cofactor in the mitochondrial electron transport pathway, and is also a lipid-soluble antioxidant. It is endogenously synthesised via the mevalonate pathway, and some is obtained from the diet. CoQ(10) supplements are available over the counter from health food shops and pharmacies. CoQ(10) deficiency has been implicated in several clinical disorders, including but not confined to heart failure, hypertension, Parkinson's disease and malignancy. Statin, 3-hydroxy-3- methyl-glutaryl (HMG)-CoA reductase inhibitor therapy inhibits conversion of HMG-CoA to mevalonate and lowers plasma CoQ(10) concentrations. The case for measurement of plasma CoQ(10) is based on the relationship between levels and outcomes, as in chronic heart failure, where it may identify individuals most likely to benefit from supplementation therapy. During CoQ(10) supplementation plasma CoQ(10) levels should be monitored to ensure efficacy, given that there is variable bioavailability between commercial formulations, and known inter-individual variation in CoQ(10) absorption. Knowledge of biological variation and reference change values is important to determine whether a significant change in plasma CoQ(10) has occurred, whether a reduction for example following statin therapy or an increase following supplementation. Emerging evidence will determine whether CoQ(10) does indeed have an important clinical role and in particular, whether there is a case for measurement.  相似文献   

14.
15.
Coenzyme Q (CoQ) is a component of the mitochondrial respiratory chain which carries out additional membrane functions, such as acting as an antioxidant. The location of CoQ in the membrane and the interaction with the phospholipid bilayer is still a subject of debate. The interaction of CoQ in the oxidized (ubiquinone-10) and reduced (ubiquinol-10) state with membrane model systems of 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (Ela2Gro-P-Etn) has been studied by means of differential scanning calorimetry (DSC), 31P-nuclear magnetic resonance (31P-NMR) and small angle X-ray diffraction (SAXD). Ubiquinone-10 did not visibly affect the lamellar gel to lamellar liquid-crystalline phase transition of Ela2Gro-P-Etn, but it clearly perturbed the multicomponent lamellar liquid-crystalline to lamellar gel phase transition of the phospholipid. The perturbation of both transitions was more effective in the presence of ubiquinol-10. A location of CoQ forming head to head aggregates in the center of the Ela2Gro-P-Etn bilayer with the polar rings protruding toward the phospholipid acyl chains is suggested. The formation of such aggregates are compatible with the strong hexagonal HII phase promotion ability found for CoQ. This ability was evidenced by the shifting of the lamellar to hexagonal HII phase transition to lower temperatures and by the appearance of the characteristic hexagonal HII 31P-NMR resonance and SAXD pattern at temperatures at which the pure Ela2Gro-P-Etn is still organized in extended bilayer structures. The influence of CoQ on the thermotropic properties and phase behavior of Ela2Gro-P-Etn is discussed in relation to the role of CoQ in the membrane.  相似文献   

16.
辅酶Q10(CoQ10)不仅是呼吸链上的电子传递体,同时也具有抗氧化功能。目前全球市场上的CoQ10正处于一种供不应求的状态。我们简要论述了CoQ10的结构、性质、功能及其生物合成过程,同时概括总结了现阶段为提高CoQ10产量而采用的新型技术手段。  相似文献   

17.
Binding of recombinant prion protein with small highly structured RNAs, prokaryotic and eukaryotic prion protein mRNA pseudoknots, tRNA and polyA has been studied by the change in fluorescence anisotropy of the intrinsic tryptophan groups of the protein. The affinities of these RNAs to the prion protein and the number of sites where the protein binds to the nucleic acids do not vary appreciably although the RNAs have very different compositions and structures. The binding parameters do not depend upon pH of the solution and show a poor co-operativity. The reactants form larger nucleoprotein complexes at pH 5 compared to that at neutral pH. The electrostatic force between the protein and nucleic acids dominates the binding interaction at neutral pH. In contrast, nucleic acid interaction with the incipient nonpolar groups exposed from the structured region of the prion protein dominates the reaction at pH 5. Prion protein of a particular species forms larger complexes with prion protein mRNA pseudoknots of the same species. The structure of the pseudoknots and not their base sequences probably dominates their interaction with prion protein. Possibilities of the conversion of the prion protein to its infectious form in the cytoplasm by nucleic acids have been discussed.  相似文献   

18.
辅酶Q10(CoQ10)是一种脂溶性抗氧化剂,具有提高人体免疫力、延缓衰老和增强人体活力等功能,广泛应用于制药行业和化妆品行业。微生物发酵法能可持续性生产辅酶Q10,具有越来越多的商业价值。本研究首先将来自类球红细菌的十聚异戊二烯焦磷酸合成酶基因(dps)整合到大肠杆菌ATCC 8739染色体上,敲除内源的八聚异戊二烯焦磷酸合成酶基因(ispB),使内源的辅酶Q8合成途径被辅酶Q10合成途径取代,得到稳定生产辅酶Q10的菌株GD-14,其辅酶Q10产量达0.68 mg/L,单位细胞含量达0.54 mg/g DCW。随后用多个固定强度调控元件在染色体上对MEP途径的关键基因dxs和idi基因以及ubiCA基因进行组合调控,将辅酶Q10单位细胞含量提高2.46倍(从0.54到1.87 mg/g)。进一步引入运动发酵单胞菌Zymomonas mobilis的Glf转运蛋白代替自身的磷酸烯醇式丙酮酸:碳水化合物磷酸转移酶系统(PTS),使辅酶Q10产量进一步提高16%。最后,对高产菌株GD-51进行分批补料发酵,辅酶Q10产量达433 mg/L,单位细胞含量达11.7 mg/g DCW。这是目前为止文献报道的大肠杆菌产辅酶Q10最高菌株。  相似文献   

19.
Coenzyme Q10 (CoQ10) or ubiquinone, a redox component of the mitochondrial electron transport chains, is a powerful antioxidant and membrane stabilizer that may prevent cellular damage during myocardial ischemia and reperfusion therapy. Coenzyme Q10 has been used primarily as an adjuvant therapy for some cardiomyopathies. However, one of the main problems in CoQ10 administration is the high variability of endogenous plasma and tissue levels, which seems to be dependent on several factors. This work explores temporal 24h and seasonal variation as well as gender and racial differences in endogenous plasma ubiquinone concentration. Coenzyme Q10 measurements (quantified by HPLC-UV) of 16 healthy volunteers were done during the daytime hours of activity beginning at 09:00h one day and ending at 09:00h the next day (13 different determinations) in two distinct months, April and October, of the year. A statistically significant circadian rhythm in plasma ubiquinone concentration that includes only the fundamental 24h component was demonstrated both in the April and October data. Furthermore, the time-point means of the ubiquinone concentration in the October study were invariably higher than those obtained in the April study. No statistically significant differences were found in CoQ10 concentration between male and female subjects, both in April and in October. In addition, racial differences were demonstrated; lower plasma ubiquinone levels were found in Caucasian compared to African subjects. However, the latter small group of subjects failed to demonstrate a circadian rhythm, neither in the April nor in the October analysis.  相似文献   

20.
Coenzyme Q10 (CoQ10) or ubiquinone, a redox component of the mitochondrial electron transport chains, is a powerful antioxidant and membrane stabilizer that may prevent cellular damage during myocardial ischemia and reperfusion therapy. Coenzyme Q10 has been used primarily as an adjuvant therapy for some cardiomyopathies. However, one of the main problems in CoQ10 administration is the high variability of endogenous plasma and tissue levels, which seems to be dependent on several factors. This work explores temporal 24h and seasonal variation as well as gender and racial differences in endogenous plasma ubiquinone concentration. Coenzyme Q10 measurements (quantified by HPLC-UV) of 16 healthy volunteers were done during the daytime hours of activity beginning at 09:00h one day and ending at 09:00h the next day (13 different determinations) in two distinct months, April and October, of the year. A statistically significant circadian rhythm in plasma ubiquinone concentration that includes only the fundamental 24h component was demonstrated both in the April and October data. Furthermore, the time-point means of the ubiquinone concentration in the October study were invariably higher than those obtained in the April study. No statistically significant differences were found in CoQ10 concentration between male and female subjects, both in April and in October. In addition, racial differences were demonstrated; lower plasma ubiquinone levels were found in Caucasian compared to African subjects. However, the latter small group of subjects failed to demonstrate a circadian rhythm, neither in the April nor in the October analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号