首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Onion seeds treated with leachates of composts prepared from alfalfa and sunflower stalks, at the dosages of 10% and 20% respectively, were inoculated with Aspergillus niger van Tieghem, causal agent of onion black mold disease. The ability of the leachates to induce the production of antifungal compounds and to control black mold were tested at seedling and set stages. Leachates from both composts were able to reduce disease incidence in sets, but not disease severity in onion seedlings. Extracts from treated seedlings and sets were fractionated by thin layer chromatography for their content of antifungal compounds. There were no significant differences between the fractions of alfalfa and sunflower compost leachates in the inhibition of the mycelium growth of A. niger, with the exception of one fraction. The presence of fluorescent pseudomonads and Pantoae agglomerans [synonym: Erwinia herbicola (Löhnis)] bacteria was determined in both leachates. The population of P. agglomerans was higher in the sunflower compost leachate compared to the alfalfa leachate. The tested strains of both bacteria were able to inhibit mycelium growth of the fungal pathogen in agar tests. This study suggests the possible role of beneficial bacteria in the induction of antifungal compounds in onion against A. niger during seedling and set stages.  相似文献   

2.
The effect of isolates of Bacillus subtilis applied as seed treatments on plant growth and white rot on three onion cultivars was studied for two seasons on muck soil of Fraser valley of British Columbia. The isolates of B. subtilis provided significant season-long protection against onion white rot on all three cultivars. The most effective isolate (BACT 2) protected the onion cultivar Autumn spice against onion white rot in both years. plant height, number of leaves per plant, and bulb weight were not affected by treating seeds with the Bacillus isolates. Bulb neck diameter of the cultivar Autumn Spice was significantly reduced by two isolates in both seasons.  相似文献   

3.
This study investigated the antagonistic effects of Trichoderma harzianum isolate (TRIC8) on mycelial growth, hyphal alteration, conidial germination, germ tube length and seed colonization by the seedborne fungal pathogens Alternaria alternata, Bipolaris cynodontis, Fusarium culmorum and F. oxysporum, the causes of seedling rot in over 30% of sunflowers. The antagonistic effect of TRIC8 on mycelial growth of pathogens was evaluated on dual culture that included two inoculation assays: inoculation of antagonist at 48 h before pathogen (deferred inoculation) and inoculation at the same time with pathogen (simultaneous inoculation). TRIC8 inhibited mycelial growth of the fungal pathogens between 70·67 and 76·87% with the strongest inhibition seen with deferred inoculation. Alterations in hyphae were observed in all pathogens. Conidial germination of F. culmorum was inhibited by most of the fungal pathogens (38·28%) by TRIC8. Inhibition of germ tube length by the antagonist varied from 31·83 to 37·67%. In seed colonization experiments, TRIC8 was applied in combination with each pathogen to seeds of a sunflower genotype that is highly tolerant to downy mildew. Seed death was inhibited by TRIC8 and the antagonist did not allow growth of A. alternata, B. cynodontis and F. culmorum on seeds and inhibited the growth of F. oxysporum at the rate of 58·32%.  相似文献   

4.
The mold flora of seeds of twelve varieties of winged beans was determined both before and after surface disinfections. When seeds were surface disinfected, mold fungi were detected in 73% of the seeds whereas 81% of the seed that was not disinfected produced mold fungi. Aspergillus spp. was most frequently present while Penicillium spp. occurred in seed of 4 varieties and in less than 4% of the seed. Twelve isolates oiA. flavus and A. parasiticus were examined for their ability to produce aflatoxins. Whether aflatoxins were produced and the amount of each varied according to the origin of the isolate and the species of Aspergillus. For example all A. parasiticus isolates produced at least 2 aflatoxins whereas 4 of the A. parasiticus isolates were non-toxigenic. When ground seeds of winged beans were inoculated with an aflatoxigenic strain of A. parasiticus the level of aflatoxins that occurred varied with the variety, however, the level of aflatoxin was higher in winged bean than in peanut tissue and 6 of the 12 winged bean varieties contained higher levels of aflatoxins than rice.  相似文献   

5.
The onion (Allium cepa L.) bulb has a high level of glutathione S-transferase (GST) activity, and it is a rich source of sulfur compounds as well as flavonoids. To investigate interactions between onion bulb GSTs and metabolites, we separated onion bulb GSTs (GSTa and GSTb as minor GSTs and GSTc, GSTd and GSTe as dominant GSTs) by DEAE-cellulose chromatography. In Western blot analysis with anti-CmGSTF1 antiserum, GSTc and GSTd fractions showed a thick band. A cDNA (AcGSTF1) corresponding to GSTc was immunoscreened with the same antiserum from an onion bulb cDNA library and its bacterial expression product was also subjected to investigation. Among the sulfur compounds, nonphysiological compounds, S-hexyl glutathione (GSH) and S-butyl GSH, showed strong inhibitory effects on 1-chloro-2,4-dinitrobenezene (CDNB)-conjugating activities of GSTa, GSTb and GSTe. However, physiological sulfur compounds, S-methyl GSH, S-propyl GSH, S-lactoyl GSH and S-ethyl-l-cysteine sulfoxide, had small or almost no inhibitory effects. Therefore, onion sulfur compounds might have the least possibility to be substantial inhibitors of onion GSTs. On the other hand, the activities of GSTc, GSTd and AcGSTF1 were strongly inhibited by flavonoids, quercetin, luteolin, apigenin and kaempferol. Ethylacetate (EtOAc) extract of onion bulb contained quercetin-4′-glucoside as a major inhibitory substance. The strong inhibitory effects of quercetin-4′-glucoside on GSTc and GSTd as well as on AcGSTF1 (50% inhibitory concentration (IC50): 9.5, 7.5 and 11.2 μM, respectively) along with its high concentration (226 μM) in the onion bulb indicates that quercetin-4′-glucoside is a physiological inhibitor of dominant GSTs in the onion bulb.  相似文献   

6.
Blackleg disease, caused by Leptosphaeria maculans, is one of the most important diseases of rapeseed Brassica napus in Iran as in other regions of the world. The samples including canola petals and seeds were collected during 2014–2015 from canola field in North Iran. Isolates characteristics of fungus were assessed based on the colony growth rate and pycnidia in Potato Dextrose Agar. The pycnidia of the fungus were black, globose to subglobose in shape, the single-celled conidia, hyaline and fusiform with diameters of 4–5 × 1.5–2 μm. Most of the isolates were produced pigment in the liquid culture in variable color brown to black. Thirteen isolates were then separated into pathogenicity groups based on the interactions on B. napus differential cultivars. For the direct detection of seed contamination with L. maculans, PCR was developed using specific primers pair (LmacF, LmacR) which can amplify ITS1 and ITS2 along with the 5.8S rRNA region of L. maculans genome. Based on the followed information and sequence analysis, the fungal isolates from these samples were identified as L. maculans. The findings of this research showed that the disease was aggressive and highly distributed from infested seeds to oilseed rape fields.  相似文献   

7.
Background matching might lower the risk of seeds being eaten by seed predators that search visually. In aviary experiments, we analyzed the selection of diff erent-colored seeds by ground-feeding finches (Fringillacoelebs and F.montifringilla) against four naturally occurring forest soil substrates. The substrates were fresh burn (black), 6-year-old burn (brown), mineral soil (pale yellow) and Pleuroziumschreberi feather moss (green). We used color-sorted seeds of Pinussylvestris, a species with a large natural variation in seed color, ranging from pale yellow to black. Although seeds were scattered on the substrates at a density of only 91 seeds m−2, birds removed seeds effectively. Both bird species found more pale than dark seeds on the fresh burn substrate. F. montifringilla also recovered more pale than dark seeds on the old burn, and more dark than pale seeds on mineral soil. In moss, the birds found very few seeds compared to the other substrates, and there was no color discrimination. P.sylvestris is frequently regenerating after fire, suggesting that dark seeds would be favored under selection from visually searching predators. Fire-adapted conifers with serotinous cones, e.g., Pinuscontorta ssp. latifolia, which spread their seeds primarily on freshly burnt surfaces, produce uniformly black or dark brown seeds. However, regeneration of the non-serotinous P.sylvestris is often extended for several years after a fire, during which substrate color and structure change. This may have helped to maintain variation in seed color. When regeneration of a plant species occurs on a substrate of uniform color, we believe that selection by visually searching seed predators will result in the evolution of cryptic seed color. Received: 16 August 1996 / Accepted: 30 November 1996  相似文献   

8.
Bacteria of the genus Bacillus are well known to possess antagonistic activity against numerous plant pathogens. In the present study, 11 strains of Bacillus spp. were isolated from a brackish environment and assayed for biocontrol activity under in vitro and in vivo conditions. Among the 11 isolates tested, nine isolates effectively inhibited the growth of various plant pathogens, namely Phytophthora capsici, Phytophthora citrophthora, Phytophthora citricola, Phytophthora sojae, Colletotrichum coccodes, Colletotrichum gloeosporioides, Colletotrichum acutatum, Rhizoctonia solani, Fusarium solani, Fusarium graminearum, Pyricularia spp., and Monilina spp. The effective isolates were further screened for suppression of Phytophthora blight of pepper plants under greenhouse conditions. The isolate SB10 exhibited the maximum (72.2%) ability to reduce the disease incidence and increased (32.2%) the vigour index of Capsicum annuum L. plants. Antifungal compounds produced by isolate SB10 were highly thermostable (100°C for 30 min). Matrix-Assisted Laser Desorption Ionization-Time of Flight mass spectrometry of the antifungal compounds revealed three lipopeptide complexes, namely the surfactins, the iturins, and the fengycins, which are well-known antifungal compounds produced by Bacillus spp.  相似文献   

9.
The bacterial microflora of nine varieties of witloof chicory (Cichorium intybus L. var.foliosum Hegi) seeds was studied. The 184 isolates were characterized by protein profiles determined by SDS-protein polyacrylamide gel electrophoresis of the total cell proteins. Isolates with identical protein profiles were grouped into one fingerprint type. Sixty-seven fingerprint types were distinguished. Two quantitatively major fingerprint types,Erwinia herbicola and an arthrobacter, represented 52% of the total number of isolates and were found on different chicory varieties. The latter organism was inhibited at seed germination. Other isolates, i.e.,Xanthomonas maltophilia, Pseudomonas paucimobilis, Agrobacterium radiobacter, Pseudomonas syringae, and a fluorescentPseudomonas, were only occasionally found. A minority were gram-positive isolates, i.e.,Bacillus sp.,Streptomyces sp., and coryneforms. In vitro activity of the isolates was tested against five fungi. Isolates with strong antifungal activity were found amongErwinia herbicola andBacillus sp.  相似文献   

10.
Burkholderia glumae is the primary causal agent of bacterial panicle blight of rice. In this study, 11 naturally avirulent and nine virulent strains of B. glumae native to the southern United States were characterized in terms of virulence in rice and onion, toxofalvin production, antifungal activity, pigmentation and genomic structure. Virulence of B. glumae strains on rice panicles was highly correlated to virulence on onion bulb scales, suggesting that onion bulb can be a convenient alternative host system to efficiently determine the virulence of B. glumae strains. Production of toxoflavin, the phytotoxin that functions as a major virulence factor, was closely associated with the virulence phenotypes of B. glumae strains in rice. Some strains of B. glumae showed various levels of antifungal activity against Rhizoctonia solani, the causal agent of sheath blight, and pigmentation phenotypes on casamino acid-peptone-glucose (CPG) agar plates regardless of their virulence traits. Purple and yellow-green pigments were partially purified from a pigmenting strain of B. glumae, 411gr-6, and the purple pigment fraction showed a strong antifungal activity against Collectotrichum orbiculare. Genetic variations were detected among the B. glumae strains from DNA fingerprinting analyses by repetitive element sequence-based PCR (rep-PCR) for BOX-A1R-based repetitive extragenic palindromic (BOX) or enterobacterial repetitive intergenic consensus (ERIC) sequences of bacteria; and close genetic relatedness among virulent but pigment-deficient strains were revealed by clustering analyses of DNA fingerprints from BOX-and ERIC-PCR.  相似文献   

11.
Abstract

Three antagonists: Pseudomonas fluorescens (Pf1), Bacillus subtilis and Trichoderma viride, were tested alone and in combination for suppression of onion leaf blight (Alternaria palandui) disease under glasshouse and field conditions. The average mean of disease reduction was 24.81% for single strains and 42.44% for mixtures. In addition to disease suppression, treatment with a mixture of antagonists promoted plant growth in terms of increased plant height and ultimately bulb yield. Though seed treatment of either single strain or strain mixtures alone could reduce the disease, subsequent application to root, leaves or soil further reduced the disease and enhanced the plant growth. The mixture consisting of Pseudomonas fluorescens Pf1 plus Bacillus subtilis plus Trichoderma viride was the most effective in reducing the disease and in promoting plant growth and bulb yield in greenhouse and field tests.  相似文献   

12.
Restriction-enzyme analysis of the chloroplast (cp) DNA yielded maternal phylogenies supporting a close phylogenetic relationship among normal (N) male-fertile and male-sterile (S) cytoplasmic bulb onion (Allium cepa), Allium altaicum, Allium fistulosum, Allium galanthum, Allium roylei, and Allium vavilovii. The S cytoplasm of onion is most likely an alien cytoplasm introduced in antiquity into onion populations. We previously showed that size differences in an intergenic spacer in the cp DNA distinguish N and S cytoplasms of onion. We cloned and sequenced this intergenic spacer from the N and S cytoplasms of onion, A. altaicum, A. fistulosum, A. galanthum, Allium pskemense, Allium oschaninii, A. roylei, and Allium ampeloprasm (outgroup) to identify the nature of previously described RFLPs and to develop a PCR-based marker revealing N-cytoplasmic contamination of S-cytoplasmic hybrid seed lots. Phylogenies based on restriction-enzyme analysis of the entire cp DNA were similar, but not identical, to those based on sequence divergence in this intergenic region. Received: 29 November 1999 / Accepted: 28 April 2000  相似文献   

13.
Neck rot (Botrytis allii) of bulb onions   总被引:3,自引:0,他引:3  
Experiments on neck rot of onions, caused by Botrytis allii showed that, although the disease only became evident in store, a major source of the pathogen was samples of infected seeds. In 1972 and 1973, 39·5 and 71·4% respectively of commercial onion seed samples tested at Wellesbourne were infected. The pathogen was internal in seed and persisted for 3 ½ yr in infected seeds kept in a seed store at 10°C and 50% r.h. Seedlings raised from diseased seeds became infected by mycelial invasion of the cotyledon leaf tips from seed-coats many of which remained attached to the cotyledons when seedlings emerged from the soil. The fungus attacked the living tissues of these leaves symptomlessly, producing conidiophores only after the leaf tissue senesced and became necrotic. Because the fungus was symptomless, the rate of spread of the pathogen in onion crops was assessed by incubating successive samples of plants from the field in humid conditions when infected tissues developed conidiophores of the fungus. This method showed that the disease was progressive in onion crops spreading more rapidly in wet humid conditions (e.g. 1972) than in dry ones (e.g. 1973). The principal means of spread were probably fungal spores; conidiophores bearing spores being produced abundantly on plants in the field under high humidity. The fungus invaded the leaves of plants successively, first infecting each leaf at the tip and then growing downwards in the tissues and eventually invading the neck of the onion bulb via the leaves which emerged directly from the top of the neck. By harvest, the fungus was situated deep within the neck tissues of infected maturing onion bulbs.  相似文献   

14.
Biofumigation by Brassicaceae green manure or seed meal incorporation into soil is an ecological alternative to chemical fumigation against soil-borne pathogens, based on the release of glucosinolate-derived compounds. This study aimed at investigating the tolerance of the beneficial fungus Trichoderma to these compounds in view to combined utilization with Brassica carinata seed meal (BCSM). Forty isolates of Trichoderma spp. were tested in vitro for tolerance to toxic volatiles released by BCSM and in direct contact with the meal. They were found to be generally less sensitive than the assayed pathogens (Pythium ultimum, Rhizoctonia solani, Fusarium oxysporum), even if a fungistatic effect was observed at the highest dose (10 μmole of sinigrin). Most of them also were able to grow on BCSM and over the pathogens tested. A preliminary experiment of integrating BCSM with Trichoderma in soil was carried out under controlled conditions with the patho-system P. ultimum—sugar beet. BCSM incorporation increased pathogen population, but reduced disease incidence, probably due to indirect mechanisms. The greatest effect was achieved when BCSM was applied in combination with Trichoderma, regardless of meal ability to release isothiocyanate. These findings suggest that disease control can be improved by this integrated approach. This study also highlighted that a reduction of allyl-isothiocyanate concentration in soil could occur due to the activity of some Trichoderma isolates. This effect could protect resident or introduced Trichoderma isolates from depressing effects due to the biocidal compounds, but, on the other hand, could reduce the efficacy of biofumigation against target pathogens.  相似文献   

15.
Myster  Randall W 《Plant Ecology》2004,172(2):199-209
To better understand how rainforest regenerates after agriculture I sampled the seed rain and seed bank, and set out seeds and seedlings, on microsites defined by distance to the forest in fields both in Puerto Rico and Ecuador. I found that (1) total seeds, species richness and life-form richness were twice as great in the Ecuador seed rain compared to Puerto Rico but Puerto Rico seeds were more evenly distributed among species and (2) total seedlings from the seed bank were similar between Puerto Rico and Ecuador, (3) the majority of seeds were lost to predation among all species and study sites, (4) seed disease was absent in P. aduncum and Miconia prasina, and no seeds germinated for Gonzalagunia spicata and P. riparia, (5) in Ecuador pathogenic disease claimed more seeds than germinated for all species, and Solanum ovalifolium was the only species that had seeds germinate but did not lose seeds to disease, (6) also in Ecuador, insect predation was significantly lower in the forest border for P. aduncum, and seed disease was significantly greater at the 10 m micro site for S. ovalifolium, (7) distance has a significant effect on seedling height and basal diameter, (8) losses of leaf area due to herbivory and pathogens were always low and (9) biomass and leaf specific mass were significantly reduced in the border and forest microsites. I conclude that Ecuador fields had more seeds, species, and life-forms than Puerto Rico fields, predation was the most severe post-dispersal seed filter in all fields, seeds that survived predation on Puerto Rico were lost either to disease or germination but to both mechanisms in Ecuador, all three seed mechanisms in Ecuador fields showed distance effects of seedling growth but not survivorship.  相似文献   

16.
Endophytic bacteria are microorganisms that live in host plants, but do not cause diseases to the hosts. This study examined the occurrence, distribution, growth-promoting and antifungal activities of endophytes in the root of Salvia miltiorrhiza Bge. Six endophytic bacterial strains, which belong to genera of Pseudomonas, Rhizobium, Bacillus and Novosphingobium, were isolated from the root of healthy S. miltiorrhiza. Cell suspension (approx. 109 cell?·?ml?1) of two isolates and cell-free fermentation filtrate of four isolates substantially promoted the growth of hypocotyl and radicle of muskmelon seeds. The cell-free fermentation filtrate of six isolates had no inhibiting effect on tested pathogenic fungi, namely Fusarium solani, F. oxysporum f. sp. vasinfectum and F. oxysporum. Six compounds were isolated from one of the six endophytic bacteria, namely, Bacillus aryabhattai, and two of these compounds displayed certain antifungal activity against three tested S. miltiorrhiza pathogens. Our work indicates that endophytic bacteria occur in the root of S. miltiorrhiza, and that associated bacterial isolates have growth-promoting effect on muskmelon seeds and are expected to be a potential source for bioactive metabolites.  相似文献   

17.

Biodegradable polymers, when reinforced with nanostructures, are considered good sustainable coatings and viable alternatives to replace conventional coatings. In addition, biopesticides are also considered safe, biodegradable and environmentally friendly; therefore there is a growing interest in nanoemulsions based on phytochemical mixtures. In this context, the aim of this study is to aggregate Neem oil nanoemulsions and pectin matrices to produce nanocomposite films, as well as evaluate the nanoemulsions effect on the film properties for coating soybean seeds. Nanoemulsions were characterized assessing their average diameter and stability, while the nanocomposite antifungal, morphology, mechanical and barrier properties were analyzed. In general, the nanoemulsions had an average diameter close to 59 ± 0.61 nm, showed good stability and its addition improved film mechanical properties: reduced stiffness, resistance, and water vapor permeability, and increased extensibility. In addition, Neem oil provided antifungal properties against Aspergillus Flavus and Penicillium Citrinum. The seed coatings promoted a positive effect on the germination process of soybean seeds. Thus, antifungal nanocomposite films from renewable sources were successfully produced. The fungicidal inhibition of Neem oil as a nanoemulsion makes these new materials promising for the production of seed coatings.

  相似文献   

18.
In vitro, Trichoderma album, Trichoderma harzianum, Trichoderma koningii, Trichoderma viride and Trichoderma virens showed antagonistic effect against the most pathogenic isolate (Sc2) of Sclerotium cepivorum, the cause of onion white rot disease. Five Trichoderma preparations of each Trichoderma sp. were prepared on wheat bran powder to be used for controlling white rot disease of onion. Greenhouse and field experiments followed the same trend where T. harzianum and T. koningii were the most effective in reducing the incidence and severity of white rot disease compared with the control. Trichoderma species preparations caused promotion to vegetative parameters of onion plants in pots and increase bulb productivity in filed. In this regard, T. harzianum and T. koningii were the most effective. A positive correlation was found between the biocontrol activity of Trichoderma species preparations and enhancement of peroxidase, polyphenoloxidase and chitinase enzymes in onion plants to resist infection with S. cepivorum.  相似文献   

19.
Seed treatments of carbendazim (Bavistin 50% W.p.) and thiophanate-methyl (Mildothane 50% W.p.) applied to overwintered salad onions at 250 g a.i./kg seed protected the foliage of plants from infection by Botrytis cinerea during the seasons 1973–1976. Crop establishment and yield were also improved. Seed treatment with calomel was not effective. Chemical analysis of treated non-viable seeds, retrieved from the soil, indicated that 73% carbendazim and 46% thiophanate-methyl remained attached to the seeds after 9 months in the soil. Analyses of onion leaves revealed that each fungicide was represented by similar quantities of carbendazim, 5 μg/g fresh weight in October 1975 reducing to 1 μg/g fresh weight in May 1976. Bioassay tests showed that the fungicide was acropetally distributed and was present in all leaves early in the season (October) but was absent from some new leaves formed in the following spring. Carbendazim-insensitive isolates of B. cinerea occurred after three seasons' use of this chemical. Sensitive isolates failed to grow on agar containing 1 μg/ml benomyl but all insensitive isolates (31 total) grew normally at this concentration and some were capable of growth on agar containing 1000 μg/ml benomyl. The emergence of foliar isolates of the fungus insensitive to the benzimidazole-based compounds used in the treatment of seeds indicated that these fungicides did not provide a permanent solution to the disease problem.  相似文献   

20.
One hundred and forty-two different actinomycete strains were isolated from rhizosphere soil of Vitis vinifera L. sampled from four Moroccan areas. To evaluate the antifungal effect of the different collected actinomycete isolates, five fungi known to be phytopathogens (Pythium ultimum, Fusarium oxyysporum f. sp. albedinis, Sclerotium rolfsii, Verticillium dahliae and Botrytis cinerea) were used. Results showed that 24 isolates had an in vitro inhibitory effect toward at least 4 of the indicator fungi, but only 9 inhibited all these phytopathogens. These nine isolates were subsequently evaluated individually using in vitro grapevine plantlets for their ability to protect against plant gray mold. We demonstrate here that pre-inoculation of plantlets with these isolates allow them to withstand Botrytis cinerea. Six of these strains were shown to belong to the genus Streptomyces and three to the genus Micromonospora. These findings indicate the potential of developing effective actinomycetes from Moroccan habitats for the biological control of Botrytis cinerea. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号