首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve natural suppression of the obscure mealybug, Pseudococcus viburni (Signoret), the parasitoids Pseudaphycus flavidulus (Brèthes) and Leptomastix epona (Walker) (Hymenoptera: Encyrtidae) of Chilean origin were released in California's Central Coast vineyards from 1997 to 1999. A survey for parasitoids of P. viburni was conducted in the Edna Valley appellation wine grape region from 2005 to 2007, 6–8 years after classical biological control releases were discontinued. Two survey methods were used. First, field collections of obscure mealybugs from commercial vineyard blocks (2005–2007) and, second, placement of “sentinel mealybugs” on potted (1 L) grape vines (2006 only). From both survey methods, P. flavidulus was recovered, albeit levels of parasitism were low (less than 0.6%). We also placed longtailed mealybug, Pseudococcus longispinus (Targioni Tozzetti), on potted plants concurrent with placement of sentinel obscure mealybugs in the vineyard in order to measure parasitoid activity on this closely-related mealybug species. No P. flavidulus were recovered from P. longispinus. Other encyrtid parasitoids reared from either P. viburni or P. longispinus were Anagyrus pseudococci (Girault), Leptomastix dactylopii Howard, Leptomastidea abnormis (Girault), Coccidoxenoides perminutus Girault, and Tetracnemoidea peregrina (Compere). A hyperparasitoid, Chaetocerus sp., was also reared. The data are discussed with respect to biological control of vineyard mealybugs and newly developed controls for the Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae). Because Pseudaphycus species reared from mealybugs are superficially very similar a taxonomic key and discussion of host relationships for selected Pseudaphycus species are provided.  相似文献   

2.
The obscure mealybug, Pseudococcus viburni (Signoret) (Hemiptera: Pseudococcidae), is a cosmopolitan pest. In New Zealand, recently introduced management tools include the host‐specific parasitoid Acerophagus maculipennis (Mercet) (Hymenoptera: Encyrtidae) established in 2001, and pheromone‐baited monitoring traps available since 2005. Red delta traps baited with rubber septum lures impregnated with 4.0 μg of the mealybug synthetic sex pheromone, placed in apple orchards in Hawke's Bay and Nelson, trapped both male P. viburni and female A. maculipennis. Two generations of both species per year were discernible, but numbers were low in spring and parasitoids were not trapped during winter (June to September). Male P. viburni catches reached a plateau at a pheromone dose of ca. 1.0 μg per lure but numbers of A. maculipennis per trap increased up to 100 μg per lure, the maximum dose tested. A mathematical model showed that the lures had a half‐life of about 7.4 days and were most attractive to P. viburni with a dose of 0.19 μg, and that the trap effectiveness decreased rapidly once the release rate dropped below the optimum. The model also predicted that the initial pheromone dose should be increased from 0.19 to 5.41 μg per lure as the desired period of deployment increased from 0 to 9 weeks. A dose of 4.0 μg had an initial relative effectiveness of about 55%, reached peak effectiveness after about 5 weeks, and fell to 55% relative effectiveness again after about 8.3 weeks. We conclude that an initial pheromone load of 4.0 μg is appropriate for practical monitoring of P. viburni during the New Zealand summer. Future applications of the sex pheromone for managing the pest and parasitoid are discussed.  相似文献   

3.
Laboratory experiments to determine aspects of the reproductive biology of Pseudaphycus maculipennis are described. All experiments were carried out at a constant temperature of 21 ± 2 °C, a 16-h photoperiod and ambient RH. Pseudaphycus maculipennis was shown to be an arrhenotokous, synovigenic, gregarious endoparasitoid of Pseudococcus viburni. Females and males lived for 16 and 11 days, respectively, when fed either honey-agar or mealybug honeydew. Relatively, large instars (third instar or adult females) were preferred for oviposition; mated females parasitized more mealybugs than unmated females, and the progeny sex ratio favored females by 3:1. Egg load increased with age from emergence to day 8, averaging 23 mature eggs/female. Mean realised daily fecundity never exceeded 5, with a mean lifetime fecundity of 46 eggs/female. Parasitised mealybugs remained alive for about 5 days and then mummified. Total development period was 20–21 days (larva 4–5 days, prepupa 3 days, pupa 8–9 days). Development periods of eggs and individual larval instars were not measured. A mean of 3.01 ± 0.1 parasitoids/mealybug were reared after individual parasitism events, increasing through super-parasitism (either self or conspecific) to 9 parasitoids/mealybug when hosts were exposed to competing females. Pseudaphycus maculipennis progeny emerged from the mummies in discrete cohorts over periods ranging from 3 min to 18 h (depending on the number of cohorts).  相似文献   

4.
In order to understand better non-target effect and potential uses, the host specificity of two parasitoid species (Anagyrus sp. nov. nr. sinope Noyes & Menezes and Leptomastix dactylopii Howard) (both Hymenoptera: Encyrtidae) for six mealybug species [Ferrisia virgata (Cockerell), Phenacoccus madeirensis Green, Phenacoccus solani Ferris, Planococcus citri (Risso),Pseudococcus longispinus (Targioni-Tozzetti) and Pseudococcus viburni (Signoret)] (all Hemiptera: Pseudococcidae) was studied through behavioral observations and laboratory rearing. The selected mealybug species represent major subfamilies and tribes of Pseudococcidae. Except for F. virgata, all mealybug species induced examinations by Anagyrus sp. nov. nr. sinope and L. dactylopii. Anagyrus sp. nov. nr. sinope was specific to P. madeirensis, which was the only mealybug species selected for oviposition and suitable for complete development of the parasitoid. No encapsulation of Anagyrus sp. nov. nr. sinope in P. madeirensis was observed. Leptomastix dactylopii accepted multiple species for oviposition, with the ranking of species preference as P. citri > P. viburni > P. longispinus > P. solani > P. madeirensis. Only P. citri, P. longispinus and P. viburni supported the development of L. dactylopii. Parasitoids developing in P. longispinus and P. viburni suffered from high encapsulation rates, while no encapsulation was observed when developing in P. citri. The results of this study suggest that Anagyrus sp. nov. nr. sinope is highly host specific. Leptomastix dactylopii, on the other hand, has a wider host range. The use of Anagyrus sp. nov. nr. sinope in a mealybug biological control program is limited to P. madeirensis and L. dactylopii to P. citri. The results presented in this study also lead us to question the accuracy of the reported host range of L. dactylopii, which include all six mealybug species tested.  相似文献   

5.
More than 1300 mealybugs and their natural enemies were collected from six crops (apples, pears, nashi, citrus, persimmon and grapes) at 91 sites. Pseudococcus longispinus and P. calceolariae were the commonest species in all crops, except in pipfruit in Hawkes Bay, inhabited almost exclusively by P. affinis. These three species accounted for more than 99% of all mealybugs collected. Mealybugs were attacked by 14 species of natural enemy, only two of which had been deliberately introduced to New Zealand. Six species of Encyrtidae were reared. Anagyrus fusciventris was recorded from New Zealand for the first time. Parectromoides varipes was newly identified as a primary parasitoid of mealybugs, and males of this species and Gyranusoidea advena, previously unknown, were found. Both species, together with Tetracnemoidea sydneyensis, T. peregrina and T. brevicornis, and Coccophagus gurneyi (Aphelinidae) and two species of Ophelosia (Pteromalidae) were widespread throughout the surveyed regions. Common predators included Cryptolaemus montrouzieri (Col: Coccinellidae), Cryptoscenea australiensis (Neuroptera: Coniopterygidae) and Diadiplosis koebelei (Dipt: Cecidomyiidae). Hyperparasitoids were extremely rare. Five species of ants were recorded tending mealybugs, but none is known to be disruptive to mealybug natural enemies. The implications of these data for biological control of mealybug pests in horticultural crops is discussed, and it is concluded that Pseudaphycus maculipennis (Hym: Encyrtidae) should be introduced against P. affinis. No other importations are recommended. The activity of existing species should be encouraged in future integrated pest management (IPM) programmes, by, for example, distributing A. fusciventris around the country, and commercializing the mass rearing and release of C. montrouzieri.  相似文献   

6.
Abstract 1. The Argentine ant, Linepithema humile, tends honeydew‐excreting homopterans and can disrupt the activity of their natural enemies. This mutualism is often cited for increases in homopteran densities; however, the ant’s impact on natural enemies may be only one of several effects of ant tending that alters insect densities. To test for the variable impacts of ants, mealybug and natural enemy densities were monitored on ant‐tended and ant‐excluded vines in two California vineyard regions. 2. Ant tending increased densities of the obscure mealybug, Pseudococcus viburni, and lowered densities of its encyrtid parasitoids Pseudaphycus flavidulus and Leptomastix epona. Differences in parasitoid recovery rates suggest that P. flavidulus was better able to forage on ant‐tended vines than L. epona. 3. Densities of a coccinellid predator, Cryptolaemus montrouzieri, were higher on ant‐tended vines, where there were more mealybugs. Together with behavioural observations, the results showed that this predator can forage in patches of ant‐tended mealybugs, and that it effectively mimics mealybugs to avoid disturbance by ants. 4. Ant tending increased densities of the grape mealybug, Pseudococcus maritimus, by increasing the number of surviving first‐instar mealybugs. Parasitoids were nearly absent from the vineyard infested with P. maritimus. Therefore, ants improved either mealybug habitat or fitness. 5. There was no difference in mealybug distribution or seasonal development patterns on ant‐tended and ant‐excluded vines, indicating that ants did not move mealybugs to better feeding locations or create a spatial refuge from natural enemies. 6. Results showed that while Argentine ants were clearly associated with increased mealybug densities, it is not a simple matter of disrupting natural enemies. Instead, ant tending includes benefits independent of the effect on natural enemies. Moreover, the effects on different natural enemy species varied, as some species thrive in the presence of ants.  相似文献   

7.
Fitness and life table parameters of two endoparasitoids of the obscure mealybug Pseudococcus viburni (Signoret), the solitary Leptomastix epona (Walker) and the gregarious Pseudaphycus flavidulus (Brèthes), were examined in relation to temperature and host size with a view to determine the efficacy of the parasitoids as biocontrol agents of the pest. Three temperature levels (21°C, 26°C and 31°C) and two host sizes classes (small, which mostly comprised third instar nymphs and large, which consisted of female adults) were studied. The lower developmental threshold and thermal constant of the host and the parasitoids were found similar so the coincidence of pest and parasitoids is likely. The rate of development of the parasitoids increased with a linear trend as the temperature increased from 21°C to 31°C. Temperature had a significant effect on mummification in both parasitoid species and on successful parasitism by P. flavidulus. Host size had a significant effect on the mummification caused by L. epona and on the proportion of the male offspring which emerged as well as on the successful parasitism by P. flavidulus. Life table parameters of the parasitoids were estimated in small and large hosts at 26°C in the laboratory. Both parasitoids achieved a greater intrinsic rate of natural increase and gross reproductive rate in addition to a shorter generation and doubling time in large mealybugs compared with small ones. Consequently, large hosts are expected to have a higher impact on the rise of the parasitoids population and the potential of the parasitoids to control the mealybug population improves with the increase of host size. Handling Editor: Torsen Meiners.  相似文献   

8.
Anagyrus sp. nr. pseudococci is an endoparasitoid which has been used as a biological control agent of mealybug pests. In this study, we compared the suitability of five mealybugs species with different phylogenetic relationships and geographical origins as hosts of this parasitoid. The selected mealybugs were: (1) a Mediterranean-native species, Planococcus ficus, sharing a long co-evolutionary history with the parasitoid; (2) three exotic species, the Afrotropical Planococcus citri, the Australasian Pseudococcus calceolariae and the Neotropical Pseudococcus viburni, with a recent history; and (3) the Neotropical Phenacoccus peruvianus, with no previous common history with the parasitoid. Host suitability was assessed based on different fitness parameters, such as body size, developmental time, emergence rate and sex ratio. The parasitoid was able to complete development in all mealybug species. Nevertheless, its emergence rate significantly varied among mealybug species, with the highest values observed in Pl. ficus and Pl. citri, intermediate values in Ps. calceolariae and the lowest ones in Ps. viburni and Ph. peruvianus. The body size of adult wasp females varied with host suitability and was positively correlated with other measures of parasitoid fitness, including the emergence rate and the sex ratio. The parasitoid developmental time differed among mealybug species but did not correlate with any other measure of fitness. A female biased sex ratio was found in the parasitoid progeny emerged from all mealybug species, except in Ps. viburni and Ph. peruvianus. There was a direct relationship between the proportion of females in the parasitoid progeny and the emergence rate.  相似文献   

9.
Two primary parasitoids of the mealybug Rastrococcus invadens Williams, (Hemiptera: Pseudococcidae), Gyranusoidea tebygi Noyes and Anagyrus mangicola Noyes (Hymenoptera: Encyrtidae), were studied. Both primary parasitoids were capable of eliminating the mealybug host but on occasions the parasitoids went extinct before the mealybugs. Three of four parasitoids known to attack G. tebygi also attacked A. mangicola. The latter species was more heavily parasitized than the former, especially by the gregarious species Chartocerus hyalipennis Hayat. In competition experiments the presence of hyperparasitoids slightly slowed the speed of extinction of either the mealybug or the primary parasitoid. A. mangicola was heavily parasitized by C. hyalipennis and the primary went extinct while many suitable mealybug hosts were still available. There were two situations where the primary parasitoids were in direct competition; in the first G. tebygi was more successful than A. mangicola while the reverse was true for the second. It is likely that the superiority of either parasitoid would depend on particular conditions but the introduction of A. mangicola is unlikely to lessen the control being exerted in West Africa by G. tebygi.  相似文献   

10.
We previously discovered that (2,4,4‐trimethyl‐2‐cyclohexenyl)‐methyl butyrate (cyclolavandulyl butyrate, CLB) is an attractant for the mealybug‐parasitic wasp Anagyrus sawadai Ishii (Hymenoptera: Encyrtidae: Anagyrini). This wasp is not likely to parasitize the Japanese mealybug, Planococcus kraunhiae (Kuwana) (Hemiptera: Pseudococcidae), under natural conditions. In this study, we showed that this ‘non‐natural’ enemy wasp can parasitize P. kraunhiae in the presence of CLB in field experiments. Laboratory‐reared mealybugs placed on persimmon trees with CLB‐impregnated rubber septa were parasitized significantly more often by endoparasitic wasps than those on non‐treatment trees (18.1–40.3 vs. 0–6.3%). Anagyrus sawadai accounted for 20% of the wasps that emerged from mealybugs placed on CLB‐treated trees. Moreover, CLB attracted another minor parasitoid, Leptomastix dactylopii Howard (Hymenoptera: Encyrtidae: Anagyrini), which also parasitized more P. kraunhiae in the presence of CLB. All wasps that emerged from the mealybugs on control trees were Anagyrus fujikona Tachikawa, a major parasitoid of P. kraunhiae around the test location. These results demonstrated that CLB can recruit an indigenous, but ‘non‐natural’ enemy that does not typically attack P. kraunhiae under natural conditions, as well as a minor natural enemy, for biological control of this mealybug species.  相似文献   

11.
Oviposition behaviour and host size selection of the solitary parasitoid Leptomastix epona(Walker) and the gregarious Pseudaphycus flavidulus(Brèthes) [both Hymenoptera: Encyrtidae] were examined on five size classes of the mealybug Pseudococcus viburni(Signoret) [Hemiptera: Pseudococcidae]. The host size classes mostly consisted of one stage (first, second, third instar nymph, young adult and preovipositing adult) and were presented together to wasps of either parasitoid species. Both parasitoid species locate the host by drumming the surface of the patch with the antennae. Leptomastix eponaseems to use mainly the antennae to examine the host but P. flavidulusmay accept or reject a host for oviposition after antennation or insertion of the ovipositor. Leptomastix eponaattempts oviposition in all the host stages from second instar nymphs but P. flavidulusincludes first instar. Both parasitoid species select mainly larger hosts (>1 mm, third instar nymphs) to oviposit but P. flavidulusis able to parasitize more second instar nymphs compared to L. epona. Female wasps of L. eponamay host feed on small mealybugs (second and third instar nymphs) that they do not use for oviposition. Oviposition experience of either parasitoid species for 24 hours does not influence host size selection on patches with hosts of similar mixed sizes. Oviposition decisions are independent of the host sizes of the preceding ovipositions. Implications about stability of a single parasitoid – host system and the success of biological control of the mealybug were discussed in respect of the developmental refugia of the two parasitoid species. Niche overlap of the two parasitoid species was discussed with a view to giving an insight into a single or multiple introduction.  相似文献   

12.
We performed “no‐choice” tests to study the host range of the parasitoid Allotropa burrelli (Muesebeck) (Hymenoptera: Platygastridae) for use against the Comstock mealybug, Pseudococcus comstocki (Kuwana) (Hemiptera: Pseudococcidae), in Southern France. We tested three Pseudococcidae species as potential non‐target hosts: two species from the same genus (Pseudococcus longispinus and Pseudococcus viburni) and Planococcus citri. Allotropa burrelli did not parasitize any of the non‐target mealybug species tested. No attempt of oviposition was recorded for the three species tested during the first 20 min of parasitoid release and no parasitism occurred in 6–8 hr of exposure of the mealybugs to the parasitoid.  相似文献   

13.
Intraguild predation of the mealybug parasitoids Anagyrus pseudococci (Girault), and Leptomastix dactylopii Howard (Hymenoptera: Encrytidae) by Nephus kreissli Fürsch & Uygun (Coleoptera: Coccinellidae) was studied. The latter is a native predator of the important pest Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae) on grapevines in Turkey. For this purpose, P. ficus of different ages parasitised by A. pseudococci or L. dactylopii, or by both A. pseudococci and L. dactylopii, were served to fourth instars and adults of N. kreissli as food. Experiments were conducted using two different treatments: no-choice (served unparasitised or only one stage of parasitised mealybug) and choice (served unparasitised and only one age of parasitised mealybug together), under controlled environmental conditions. Both fourth instars and adult predators were fed on two- and four-day-old mealybugs parasitised by A. pseudococci or on two-, four- and six-day-old mealybugs parasitised by L. dactylopii or by either A. pseudococci or L. dactylopii. The predators could not consume six-day-old mealybugs parasitised by A. pseudococci, eight-day-old mealybugs parasitised by L. dactylopii, or those parasitised by either of these parasitoids which had become mummified. While it was found that the adult predators preferred parasitised mealybugs to unparasitised, the larvae did not show a pronounced preference between parasitised and unparasitised mealybugs (except for mealybugs parasitised by A. pseudococci).  相似文献   

14.
Mealybugs (Hemiptera: Pseudococcidae) are pests constraining the international trade of Brazilian table grapes. They damage grapes by transmitting viruses and toxins, causing defoliation, chlorosis, and vigor losses and favoring the development of sooty mold. Difficulties in mealybug identification remain an obstacle to the adequate management of these pests. In this study, our primary aim was to identify the principal mealybug species infesting the major table grape-producing regions in Brazil, by morphological and molecular characterization. Our secondary aim was to develop a rapid identification kit based on species-specific Polymerase Chain Reactions, to facilitate the routine identification of the most common pest species. We surveyed 40 sites infested with mealybugs and identified 17 species: Dysmicoccus brevipes (Cockerell), Dysmicoccus sylvarum Williams and Granara de Willink, Dysmicoccus texensis (Tinsley), Ferrisia cristinae Kaydan and Gullan, Ferrisia meridionalis Williams, Ferrisia terani Williams and Granara de Willink, Phenacoccus baccharidis Williams, Phenacoccus parvus Morrison, Phenacoccus solenopsis Tinsley, Planococcus citri (Risso), Pseudococcus viburni (Signoret), Pseudococcus cryptus Hempel, four taxa closely related each of to Pseudococcus viburni, Pseudococcus sociabilis Hambleton, Pseudococcus maritimus (Ehrhorn) and Pseudococcus meridionalis Prado, and one specimen from the genus Pseudococcus Westwood. The PCR method developed effectively identified five mealybug species of economic interest on grape in Brazil: D. brevipes, Pl. citri, Ps. viburni, Ph. solenopsis and Planococcus ficus (Signoret). Nevertheless, it is not possible to assure that this procedure is reliable for taxa that have not been sampled already and might be very closely related to the target species.  相似文献   

15.
The mutualistic association between some ant species and honeydew‐producing Hemiptera has been shown to influence the distribution patterns and abundance of these hemipterans and their natural enemies. We studied the spatial distribution patterns of three ant species, mealybugs and mealybug parasitoids for two consecutive growing seasons on three wine grape farms in the Western Cape, South Africa. During the study period, no ant or mealybug controls were applied. Ant and mealybug monitoring was conducted on a total of 21 ha using a presence/absence sampling system, while parasitoids were collected from infested mealybug females. Spatial analysis by distance indices was used to analyse spatial distribution of insects and ArcView? was used to map the gap, patch and local association indices where significant association and disassociation occurred. Significant associations were found between some ants and parasitoids, while significant disassociations between the ants Crematogaster peringueyi and Linepithema humile; and also between Crematogaster peringueyi and Anoplolepis steingroeveri were found. Interspecific competition between ant species could play a role in the distribution of parasitoids and mealybugs. Our results stress the importance of monitoring for ants and mealybugs and further highlight the importance of restricted chemical applications against ants during the growing season.  相似文献   

16.
The host behavioral and immune (encapsulation) defenses against the parasitoid Anagyrus sp. nr. pseudococci were compared for five mealybug species with different phylogenetic relationships and geographical origins: i) a Mediterranean native mealybug species, Planococcus ficus, with a long co-evolutionary history with the parasitoid; ii) three alien mealybugs species, Planococcus citri, Pseudococcus calceolariae and Pseudococcus viburni, with a more recent co-evolutionary history; and iii) a fourth alien mealybug species, Phenacoccus peruvianus, with no previous common history with the parasitoid. Three host defense behaviors were registered: abdominal flipping, reflex bleeding and walking away. The native host Pl. ficus and its congener Pl. citri exhibited the lowest probability of defense behavior (0.11?±?0.01 and 0.09?±?0.01 respectively), whereas the highest value was observed in P. viburni (0.31?±?0.02). Intermediate levels of defense behavior were registered for Ps. calceolariae, and Ph. peruvianus. The probability of parasitoid encapsulation was lowest and highest for two alien host species, Ph. peruvianus (0.20?±?0.07) and Ps. viburni (0.86?±?0.05), respectively. The native host Pl. ficus, its congener Pl. citri and Ps. calceolariae showed intermediate values (0.43?±?0.07, 0.52?±?0.06, and 0.45?±?0.09, respectively). The results are relevant with respect to biological control and to understand possible evolutionary processes involved in host range of A. sp. nr. pseudococci.  相似文献   

17.
Leptomastidea abnormis (Girault) and Leptomastix dactylopii (Howard) [Hymenoptera: Encyrtidae] are the two parasitoid species frequently used for biological control of the citrus mealybug Planococcus citri (Risso) [Homoptera: Pseudococcidae]. As part of a programme to determine the best control practice, host size selection and sex allocation were studied in L. abnormis, and compared with those of L. dactylopii. L. abnormis showed a preference for the second size class, but also attacked third and fourth size class and adult mealybugs, while in previous studies L. dactylopii was found to prefer the third and fourth size class and adults, and never attacked second size class mealybugs. Female L. abnormis reared from parasitized mealybugs had a higher mean body mass than males, as is predicted by Charnov's theory on sex allocation. However, sex ratios of emerging L. abnormis did not differ between mealybug size classes. These results imply possibile coexistence of the two parasitoids. As field evidence suggests a more complex interaction between the two species, studying direct competition would be a useful next step.  相似文献   

18.
The obscure mealybug Pseudococcus viburni (Signoret) (Hemiptera: Pseudococcidae) is recorded for the first time from Colombia based on specimens collected on Opuntia cylindrica (Lam.) DC., Mammillaria sp. (Cactaceae), Escallonia paniculata (Ruiz & Pav.), Roem. & Schult. (Escalloniaceae), Ficus carica L. (Moraceae), Coffea arabica L. (Rubiaceae), Citrus sp. (Rutaceae), Cestrum nocturnum L. and Solanum betaceum Cavanilles (Solanaceae). Multiple methods were used to identify P. viburni because it belongs to the “Pseudococcus maritimus” complex, a group composed of more than 60 species with high variation in morphological characteristics. The specimens were identified based on the morphology and morphometric analysis of third-instar nymphs and adult females. This morphological identification was corroborated by data on geographical distribution, plant hosts and a molecular identification using two different loci, CO1 (mtDNA) and the 28S ribosomal gene (nuclear genome). An updated list of species of Pseudococcus Westwood recorded from Colombia and information on morphological variation found in the studied specimens from Brazil and Colombia are provided.  相似文献   

19.
The mealybug parasitoid Anagyrus spec. nov near sinope (Hymenoptera: Encyrtidae) is an undescribed parasitoid of the Madeira mealybug, Phenacoccus madeirensis Green (Homoptera: Pseudococcidae). We investigated the preference of Anagyrus spec. nov near sinope for six developmental stadia (first‐ and second‐instar nymphs, third‐instar immature females, third‐ or fourth‐instar immature males, pre‐reproductive adult females, and ovipositing adult females) of P. madeirensis and the fitness consequences of the host stage selection behavior. In the no‐choice test, Anagyrus spec. nov near sinope parasitized and completed development in all host stadia except third‐instar immature males. When all host stadia were offered simultaneously, the parasitoids preferred third‐instar immature and pre‐reproductive adult females. Dissection of the stung mealybugs revealed that the clutch size (number of eggs per host) was approximately four and three in the third‐instar and pre‐reproductive females, respectively, and one egg per first‐instar nymph. Parasitoids emerged from P. madeirensis parasitized at third‐instar or pre‐reproductive adult female completed development in the shortest duration, achieved a higher progeny survival rate, larger brood and body size, and the lowest proportion of males. We showed that the continued development of mealybugs had significant influence on the fitness of the parasitoids. Although deposited as eggs in first‐ or second‐instar nymphs, parasitoids emerged from mummies that had attained third‐instar or adult development achieved similar progeny survival rate, brood size, body size, and sex ratio as those parasitoids deposited and developed in third‐instar or adult mealybugs. By delaying larval development in young mealybugs, Anagyrus spec. nov near sinope achieved higher fitness by allowing the parasitized mealybugs to grow and accumulate body size and resources. We suggest that the fitness consequence of host stage selection of a koinobiont parasitoid should be evaluated on both the time of parasitism and the time of mummification.  相似文献   

20.
Abstract The mealybug Oracella acuta, native to the southeastern US, was accidentally introduced into slash pine plantations in Guangdong Province in China in 1988. A classical biological control program was initiated in 1995, and the parasitoids Allotropa oracellae, Acerophaus coccois, and Zarhopalus debarri were imported from the US. A total of 19 972 parasitized mealybugs were shipped to China from 1996–2004, from which 15 430 wasps emerged, 12 933 of which were the three target species. Efforts to establish a mass-rearing program for the parasitoids in China failed. Five field release sites were established, and 6 020 parasitoids were released. Only 118 individuals of the three imported species were collected during establishment checks, although several wasps were collected 1–2 years after the last parasitoid release. Over 2 000 Anagyrus dactylopii, a cosmopolitan parasitoid, emerged from the parasitized mealybugs collected, a majority from the Taishan area near the site of the original introduction of O. acuta. To date the imported parasitoids have failed to establish, and natural enemies have not noticeably reduced mealybug populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号