首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viability and pathogenicity of Esteya vermicola in pine trees   总被引:1,自引:0,他引:1  
Esteya vermicola, as the first reported endoparasitic fungus of pinewood nematode (PWN), exhibited high infectivity in vitro and has been patented based on its potential as a bio-control agent against PWN. The isolation substrates and taxonomic status suggested E. vermicola is associated with beetles, saprotrophic and kills nematodes in trees. However, the direct experimental evidence for this was still lacking. In the present studies, beta-tubulin gene was applied to confirm the taxonomic identification of E. vermicola. Furthermore, our results showed that E. vermicola survived resin and other chemicals secreted by pine trees, and reproduced with new lunate conidia to parasitize other migratory PWNs. In order to confirm the pathogenicity of E. vermicola, pine seedlings and large pine trees were inoculated with 300 µL and 40 mL conidia suspensions (109 mL?1). The results showed that all treated pine trees were healthy with no differences compared to the controls. Furthermore, necrosis or discoloration caused by this fungus was not observed on wood slices. Basal knowledge was provided for the application of E. vermicola to control PWN in vivo.  相似文献   

2.
Pinewood nematode (PWN), Bursaphelenchus xylophilus, is the causative agent of pine wilt disease (PWD) of pine trees and is transmitted by cerambycid beetles belonging to the genus Monochamus. PWN is believed to have been introduced into Japan from North America at the beginning of the 20th century. In this article, we first provide an outline of the PWD system and the range expansion of PWN in Japan and then review the literature, focusing on the virulence of PWN. Virulence is a heritable trait in PWN, with high virulence being closely related to a high rate of reproduction and within-tree dispersal. When two PWN isolates with different virulence levels are inoculated into pine seedlings, the more virulent nematodes always dominate in dead seedlings. In a laboratory setting, many more virulent nematodes board the insect vectors than avirulent ones. The age at which vectors transmit the most abundant PWNs to pine twigs changes during the course of a PWD epidemic. However, the relation between virulence and transmission of PWN remains as yet relatively unknown. Such information would enable ecologists to predict the evolution of the PWD system. In this review we also compare ecological traits between the PWN and the avirulent congener, B. mucronatus.  相似文献   

3.
The insecticidal activity of Beauveria bassiana GHA derived from a commercial mycoinsecticide BotaniGard ES against Frankliniella occidentalis was determined in a bioassay by dipping the female adults into a conidial suspension. The 90% lethal concentration of B. bassiana GHA was estimated to be 9.7 × 106 conidia/ml. The lethal times for achieving 90% mortality of thrips inoculated with a 1/500-diluted solution of BotaniGard ES and a 107.5 (3.16 × 107) conidia/ml suspension of B. bassiana GHA were estimated to be five and six days, respectively. When the treated thrips were exposed to a high relative humidity (RH) of over 99% for various periods and then transferred to 60% RH, the requisite lengths of the high-humidity period to achieve 90% mortality of the thrips at six days after inoculation were estimated to be 46 and 47 h in BotaniGard ES and B. bassiana GHA, respectively. Fungal multiplication in the thrips was detected between 48 to 60 h after inoculation by measuring Beauveria-specific DNA in the host following inoculation with a B. bassiana GHA suspension of 107.5 conidia/ml using a real-time quantitative PCR. The mycelial growth in the host hemocoel was not influenced by the low-humidity condition.  相似文献   

4.
Rice and oat flours were analyzed as media for the production of conidia by M. anisopliae var. lepidiotum. The presence of peptone increased conidia yield regardless of the substrate used; however, the highest yield was achieved on oat flour media. The effect of oxygen on conidia production using oat-peptone medium was also studied at two levels: Normal atmosphere (21% O2) and Oxygen-rich pulses (26% O2). Maximum conidia production (4.25 × 107 conidia cm−2) was achieved using 26% O2 pulses after 156 h of culture, which was higher than 100% relative to conidial levels under normal atmosphere. Conidia yield per gram of biomass was 2.6 times higher with 26% O2 (1.12 × 107 conidia mg−1). Conidia quality parameters, such as germination and hydrophobicity, did not show significant differences (P < 0.05) between those treatments. Bioassays parameters, using Tenebrio molitor adults, were analyzed for conidia obtained in both atmospheres and data were fitted to an exponential model. The specific mortality rates were 2.22 and 1.26 days−1, whereas lethal times for 50% mortality were 3.90 and 4.31 days, for 26% O2 pulses and 21% O2 atmosphere, respectively. These results are relevant for production processes since an oxygen increase allowed superior levels of conidia by M. anisopliae without altering quality parameters and virulence toward Tenebrio molitor adults.  相似文献   

5.
To examine the mechanisms of earlier reported alleviation of fluoride injury in ectomycorrhizal plants by NaCl, jack pine (Pinus banksiana) and white spruce (Picea glauca) seedlings were subjected to 1 mM and 5 mM KF in the presence of either 60 mM NaCl or 10% polyethylene glycol 3350 (PEG) for 2 weeks. Before the treatments, seedlings had either been inoculated with the ectomycorrhizal fungus Suillus tomentosus or remained non-inoculated. The inoculation with S. tomentosus reduced Na uptake by shoots and roots of jack pine seedling and by roots of white spruce that were treated with 60 mM NaCl. Mycorrhizal associations also drastically decreased fluoride uptake by jack pine seedlings, but did not affect shoot fluoride concentrations in white spruce. When NaCl was replaced by PEG in the 5 mM KF treatment solution, shoot fluoride concentrations were reduced by more than twofold without corresponding reductions in transpiration rates in mycorrhizal and non-mycorrhizal white spruce seedlings. When fluoride was present in the treatment solution, Na concentrations were lower in shoots and roots of both jack pine and white spruce mycorrhizal and non-mycorrhizal seedlings. The results suggest that Suillus tomentosus may help alleviate the effects of soil fluoride and salinity in jack pine and that fluoride uptake in white spruce is sensitive to osmotic stress.  相似文献   

6.
Embellisia astragali is a strong, virulent pathogen that develops within milk vetch (Astragalus adsurgens). In order to determine nutrient requirements, the fungus was cultured on 9 carbon sources, 9 nitrogen sources, and 13 growth media in the dark at 25°C. Growth rates and sporulation capacity were measured after 4 and 12 weeks. All carbon sources supported growth, but only soluble starch, inulin, and dextrose supported sporulation. In general, better growth was obtained on disaccharides and polysaccharides than on monosaccharides. Compared with no growth on NH4 +-N and urea, the fungus grew little on all NO3 -N, amino-N, and other organic-N such as peptone. There was no sporulation or very sparse conidia on almost all nitrogen sources with supplied dextrose or soluble starch as sole carbon source. The better growth and sporulation on most of the semidefined media than on defined media indicates that some components in plant or animal material may be vital to the fungus. Sporulation was positively correlated with growth rate in N source experiment at 12 weeks and in growth media experiment at 4 and 12 weeks. The fungus favors grow within agar with growth rate less than 1.18 mm day−1.  相似文献   

7.

Background  

Invasive aspergillosis, which is mainly caused by the fungus Aspergillus fumigatus, is an increasing problem in immunocompromised patients. Infection occurs by inhalation of airborne conidia, which are first encountered by airway epithelial cells. Internalization of these conidia into the epithelial cells could serve as a portal of entry for this pathogenic fungus.  相似文献   

8.
On the family Brassicaceae, the causal agent responsible for downy mildew disease was originally regarded as a single species, Peronospora parasitica (now under Hyaloperonospora), but it was recently reconsidered to consist of many distinct species. In this study, 11 specimens of Peronospora drabae and P. norvegica parasitic on the genus Draba were investigated morphologically and molecularly. Pronounced differences in conidial sizes (P. drabae: 14–20 × 12.5–15.5 μm; P. norvegica: 20–29 × 15.5–22 μm) and 7.8% sequence distance between their ITS1-5.8S-ITS2 rDNA sequences confirmed their status as distinct species. Based on ITS phylogeny and morphology (monopodially branching conidiophores, flexuous to sigmoid ultimate branchlets, hyaline conidia and lobate haustoria), the two species unequivocally belong to the genus Hyaloperonospora and not to Peronospora to which they were previously assigned. Therefore, two new combinations, Hyaloperonospora drabae and H. norvegica, are proposed. The two taxa are illustrated and compared using the type specimen for H. norvegica and authentic specimens for H. drabae, which is lectotypified.  相似文献   

9.
Surface inoculation dose–response and time–response bioassays and detached fruit bioassays were conducted with a novel South African isolate of the Cryptophlebia leucotreta granulovirus (CrleGV-SA) against Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Noctuidae) neonate larvae. LC50 and LC90 values were estimated to be 4.095 × 103 and 1.185 × 105 OBs ml−1, respectively. LT50 and LT90 values were estimated to be 4 days 22 h and 7 days 8 h, respectively, categorising the virus as a fast or type 2 granulovirus. There was a conspicuous difference in behaviour between larvae on inoculated diet and untreated diet, resulting in a significant reduction in penetration of diet. Bioassays on detached Navel oranges revealed LC50 and LC90 values of 9.310 × 107 and 1.515 × 109 OBs ml−1, when using data on numbers of larvae per fruit rather than on numbers of infested fruit. Field trials will be conducted.  相似文献   

10.
Conidia of two morphologically different types, one with a basal appendage only and the other with appendage at both ends, were isolated from the stems of Paeonia suffruticosa. Single conidial isolates of both types of conidia yield identical colonies, which then produced both types of conidia on agar media depending on temperature, thus showing that both types of conidia belong to the same fungus. Seimatosporium botan is described based on its morphological characteristics. The teleomorph of the fungus was first found on sterilized P. suffruticosa stems placed on water agar, when grown at 5°C for 2 months in 12-h photoperiod. Discostroma botan is described for this fungus. The teleomorph is also found on the same host in the field.  相似文献   

11.
Bacterial isolates having antifungal and good plant growth-promoting attributes were isolated from chir-pine (Pinus roxburghii) rhizosphere. An isolate, Bacillus subtilis BN1 exhibited strong antagonistic activity against Macrophomina phaseolina, and other phytopathogens including Fusarium oxysporum and Rhizoctonia solani. It was characterized and selected for the present studies. BN1 resulted in vacuolation, hyphal squeezing, swelling, abnormal branching and lysis of mycelia. The cell-free culture filtrate of BN1 inhibited the growth of M. phaseolina. Pot trial study resulted in statistically significant increase in seedling biomass besides reduction in root rot symptoms in chir-pine seedlings. BN1 treatment resulted in 43.6% and 93.54% increases in root and shoot dry weights respectively, as compared to control. Also, 80–85% seed viability was recorded in treatments receiving BN1 either alone or in the presence of M. phaseolina, compared to 54.5% with M. phaseolina. Bioinoculant formulation study suggested that maximum viability of bacteria was in a sawdust-based carrier. B. subtilis BN1 produced lytic enzymes, chitinase and β-1,3-glucanase, which are known to cause hyphal degradation and digestion of the cell wall component of M. phaseolina. In the presence of M. phaseolina, population of B1 was 1.5 × 10c.f.u. g−1 root after one month, which increased to 4.5 × 10c.f.u. g−1 root in three months. Positive root colonization capability of B. subtilis BN1 proved it as a potent biocontrol agent.  相似文献   

12.
A method for isolation and shoot regeneration from electrofused protoplasts of L. angustifolius and L. subcarnosus was developed. Viable protoplasts were isolated from leaves of in-vitro grown seedlings at an average yield of 6 × 105 protoplasts g−1 fresh weight. Liquid and agarose solidified B5 media were used for protoplast culture. In the liquid-culture system, all tested media, VKM, P1 and KM8p, were applicable for inducing cell division (84% of all tested petri dishes at four weeks) and colony formation. Media containing additional carbohydrates were suitable to produce compact calli with green and brown pigmentations in different combinations. Analysis of callus with molecular markers allowed to identify six somatic hybrids. However, none of the parental-protoplast derived cell colonies could develop shoots. This is the first report on protoplast fusion of L. angustifolius and L. subcarnosus with subsequent shoot regeneration.  相似文献   

13.

Background

A nematophagous fungus, Esteya vermicola, is recorded as the first endoparasitic fungus of pine wood nematode (PWN), Bursaphelenchus xylophilus, in last century. E. vermicola exhibited high infectivity toward PWN in the laboratory conditions and conidia spraying of this fungus on Japanese red pine, Pinus densiflora, seedlings in the field protected the pine trees from pine wilt disease to some extent, indicating that it is a potential bio-control agent against PWN. Previous research had demonstrated that the living fungal mycelia of E. vermicola continuously produced certain volatile organic compounds (VOCs), which were responsible for the PWN attraction. However, identity of these VOCs remains unknown.

Methodology/Principal Findings

In this study, we report the identification of α-pinene, β-pinene, and camphor produced by living mycelia of E. vermicola, the same volatile compounds emitted from PWN host pine tree, as the major VOCs for PWN attraction using gas chromatography-mass spectrometry (GC-MS). In addition, we also confirmed the host deception behavior of E. vermicola to PWN by using synthetic VOCs in a straightforward laboratory bioassay.

Conclusions/Significance

This research result has demonstrated that the endoparasitic nematophagous fungus, E. vermicola, mimics the scent of PWN host pine tree to entice PWN for the nutrient. The identification of the attractive VOCs emitted from the fungus E. vermicola is of significance in better understanding parasitic mechanism of the fungus and the co-evolution in the two organisms and will aid management of the pine wilt disease.  相似文献   

14.
Two extracellular chitinases were purified from Paecilomyces variotii DG-3, a chitinase producer and a nematode egg-parasitic fungus, to homogeneity by DEAE Sephadex A-50 and Sephadex G-100 chromatography. The purified enzymes were a monomer with an apparent molecular mass of 32 kDa (Chi32) and 46 kDa (Chi46), respectively, and showed chitinase activity bands with 0.01% glycol chitin as a substrate after SDS-PAGE. The first 20 and 15 N-terminal amino acid sequences of Chi32 and Chi46 were determined to be Asp-Pro-Typ-Gln-Thr-Asn-Val-Val-Tyr-Thr-Gly-Gln-Asp-Phe-Val-Ser-Pro-Asp-Leu-Phe and Asp-Ala-X-X-Tyr-Arg-Ser-Val-Ala-Tyr-Phe-Val-Asn-Trp-Ala, respectively. Optimal temperature and pH of the Chi32 and Chi46 were found to be both 60°C, and 2.5 and 3.0, respectively. Chi32 was almost inhibited by metal ions Ag+ and Hg2+ while Chi46 by Hg2+ and Pb2+ at a 10 mM concentration but both enzymes were enhanced by 1 mM concentration of Co2+. On analyzing the hydrolyzates of chitin oligomers [(GlcNAc) n , n = 2–6)], it was considered that Chi32 degraded chitin oligomers as an exo-type chitinase while Chi46 as an endo-type chitinase.  相似文献   

15.
Unfed adult Amblyomma americanum were exposed to the entomopathogenic fungus Beauveria bassiana. Ticks exposed to the fungus exhibited reduced survival and increased water loss as indicated by change in weight. Treated ticks survived 7.2 ± 0.22 days (mean ± SE) and controls survived 17.9 ± 0.73 days (P = 0.01; df = 57). At death, ticks exposed to the fungus had lost 25.2 ± 0.84% of their starting weight; control ticks had lost 14.1 ± 0.85% of their starting weight (P = 0.01; df = 96). Water loss was highest immediately following inoculation, although losses continued to be higher than in uninoculated ticks. This suggests that fungal penetration causes sufficient cuticle damage to cause desiccation, although other water-loss avenues exist, including increased time of spiracular opening. Additionally this study did not eliminate the possibility of a negative impact on water vapor uptake. This is the first study to investigate the effect of an entomopathogenic fungus on the water balance of a tick.  相似文献   

16.
We tested the combined effect of the fungus Beauveria bassiana and the microsporidium Nosema pyrausta on the European corn borer larvae, Ostrinia nubilalis, in the laboratory. The first instar of O. nubilalis larvae was the most sensitive to the B. bassiana infection followed by the fifth, second, third, and fourth instar (LC50s were 4.91, 6.67, 7.13, 9.15, and 6.51 × 105 conidia/ml for the first to fifth instars, respectively). Mortality of each instar increases positively with concentration of conidia. When B. bassiana and N. pyrausta were used in combination, mortality increased significantly in all instars. Relative to the B. bassiana treatment alone, the B. bassiana + N. pyrausta treatment decreased the LC50s by 42.16%, 37.63%, 21.60%, 27.11%, and 33.95% for the first to fifth instars, respectively. The combined effects of the two pathogens were mostly additive. However, at the two highest concentrations the pathogens interacted synergistically in the first and second instar. Individuals that survived the B. bassiana and B. bassiana + N. pyrausta treatments and developed into adults had significantly shorter lifespans and females oviposited fewer eggs than non-exposed insects. The effects on the longevity and the egg production were most pronounced at high concentration of B. bassiana conidia.  相似文献   

17.
Apical meristems of multiple shoots produced from axenic seedlings of Kentucky bluegrass (Poa pratensis L.) were used for Agrobacterium tumefaciens-mediated transformation. Transformation parameters were optimized for concentration of bacterial cells, duration of infection, and vacuum infiltration. The highest transformation frequency (1.42%) was obtained by infection with Agrobacterium suspension of OD600 = 0.6 for 5 min, under a negative pressure of 0.5 × 105 Pa. After co-cultivation, the herbicide-resistant plants were rooted and transplanted into flowerpots. Transgenic plants were confirmed by polymerase chain reaction (PCR) assay and Southern blot analysis. Using this transformation system, the betA gene encoding choline dehydrogenase and mutant als gene encoding the enzyme acetolactate synthase were introduced into three Kentucky bluegrass cultivars.  相似文献   

18.
Alligatorweed, (Alternanthera philoxeroides (Mart.) Griseb.), an aquatic and wetland plant native to South America, is an aggressive weed in many parts of the world. Its ability to compete with other native plants and to impede waterways has made it a serious threat to aquatic ecosystems. Although biological control with insects has been fairly successful in aquatic habitats, there is a need for additional agents to manage the weed in upland sites. Accordingly, in a survey in Brazil in 1997 a fungus, Nimbya (=Alternaria) alternantherae (Holcomb and Antonopoulus) Simmons and Alcorn, was discovered and confirmed to be highly damaging to alligatorweed. Studies were conducted to determine the potential of this fungus for controlling this weed. Several isolates from Brazil, USA, and Puerto Rico were compared and no differences in virulence were observed, although a lower dew requirement was demonstrated for the Brazilian isolates. Conidia were more effective than mycelial suspension, and inoculum concentrations of 1×105 and 1×106 conidia per ml provided significant levels of control of the weed in greenhouse and field experiments, respectively. In a host-range study, N. alternantherae infected 6 plant species from a total of 42 species belonging to 23 families. N. alternantherae has the potential to be an effective mycoherbicide for alligatorweed.  相似文献   

19.
Lu L  Sheng H  Li H  Gan W  Liu C  Zhu J  Loos RJ  Lin X 《Human genetics》2012,131(3):505-512
Recent studies have identified common variants in or near GC, CYP2R1 and NADSYN1/DHCR7 to be associated with 25-hydroxyvitamin D [25(OH)D] levels in European populations. We aimed to examine whether these variants also influence 25(OH)D levels in Chinese. Seven common variants were successfully genotyped and tested for associations with plasma 25(OH)D levels in a population-based cohort of 3,210 Chinese Hans from Beijing and Shanghai. Six common variants at GC (rs4588, rs7041, rs2282679 and rs1155563) and NADSYN1/DHCR7 (rs3829251 and rs1790349) loci were all significantly associated with lower plasma 25(OH)D levels (−0.036 ≤ β ≤ −0.076 per risk-allele, P ≤ 5.7 × 10−5), while CYP2R1-rs2060793 showed a trend toward association with 25(OH)D levels in the Shanghai subpopulation (P = 0.08), but not in the Beijing subpopulation (P = 0.82). Haplotype-based association analyses of the four GC variants showed that only the haplotype that contained all risk-alleles (TACC) was significantly associated with lower plasma 25(OH)D levels (β = −0.085, P = 2.3 × 10−9), while the haplotype containing the risk-alleles of rs4588 and rs2282679 (TATC) was marginally associated with lower 25(OH)D levels (β = −0.054, P = 0.0562) when compared with GCTA haplotype carrying the four protective alleles. Most notably, conditional analyses showed that only GC-rs4588 and GC-rs2282679 (r 2 = 0.97) remained significantly associated with 25(OH)D concentrations (P ≤ 1.9 × 10−5) after adjusting for the other two SNPs in GC. In conclusion, GC and NADSYN1/DHCR7 loci individually and collectively contribute to variation in plasma vitamin D levels in Chinese Hans.  相似文献   

20.
Jeong Jun Kim 《BioControl》2007,52(6):789-799
The activity of entomopathogens on insect pests has been investigated for many species but the influence of entomopathogenic fungi on factors other than mortality relating to population increase has not been frequently studied. The influence of Lecanicillium attenuatum CS625 (=Verticillium lecanii CS625) on development and reproduction of cotton aphid (Aphis gossypii) was investigated. A conidia suspension of the isolate was applied onto first instar nymphs. Increased spore concentration did not significantly affect each nymphal stage, total nymphal period, pre-reproductive period and the age of first larviposition. A significant dose effect on reduction of life span, reproductive period and fecundity was observed in 1st and 3rd instars after spore application. When conidia were applied to 1st instars, life span was significantly reduced to 10.8 and 8.4 days at 1 × 104 and 1 × 108 conidia/ml, respectively from 12.2 days in the control. During the life span, total fecundity was 41 ± 7.3, 26 ± 0.8 and 22 ± 5.7 nymphs per female at 1 × 104, 1 × 106 and 1 × 108 conidia/ml, respectively compared with 51 ± 2.0 nymphs per untreated female. Reproduction period was also significantly shortened with increasing spore concentration. Application of spores to 3rd instars showed a similar trend. However, daily fecundity of individual aphids was not affected by spore dose. It was concluded that the isolate of L. attenuatum is able to affect populations of cotton aphid by reducing life span and total fecundity as well as by killing the aphids directly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号