首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An iron rich tissue with an important pseudo-peroxidase activity and which specifically incorporates 55Fe and 3H delta aminolevulinic acid is localized around some vessels of the investigated Annelids : parapodial vessels of Nephthys, chloragogen coeca of Arenicola. This tissue which can be considered as haemopoietic has been studied at the EM level : it is characterized by numerous dense inclusions with pseudo-peroxidase activity and well developed granular endoplasmic reticulum and Golgi.  相似文献   

2.
The expression of leukocyte adhesion molecules on lymphatic vessels of the human tongue was examined using histochemical and immunohistochemical methods. Three different types of lymphatic vessels were distinguished: type I vessels expressed intercellular adhesion molecule-1 (ICAM-1), platelet-endothelial cell adhesion molecule-1 (PECAM-1), and endothelial cell-selectin (ELAM-1); type II vessels expressed ICAM-1 and PECAM-1; and type III vessels expressed PECAM-1 only. The lymphatic vessels located very close to the oral epithelium (lymphatic capillaries) and the other lymphatic vessels near the oral epithelium were type I. The lymphatic vessels in the submucosal connective tissue (collecting lymphatic vessels) were type II and type III. The results suggest that there may be functional differences in the lymphatic endothelium, where lymphatic capillaries are more active than collecting lymphatic vessels in lymphocyte migration from tissue into the lymphatic vessels.  相似文献   

3.
A simple protocol has been developed for recycling plastic tissue culture vessels. The killing properties of microwaves were used to decontaminate plastic tissue culture vessels for reuse. Nine bacterial cultures, four gram-negative and five gram-positive genera, including two Bacillus species, were used to artificially contaminate tissue culture vessels. The microwaves produced by a "home-type" microwave oven (2.45 gHz) were able to decontaminate the vessels with a 3-min exposure. The same exposure time was also used to completely inactivate the following three test viruses: polio type 1, parainfluenza type 1 (Sendai), and bacteriophage T4. The recycling procedure did not reduce the attachment and proliferation of the following cell types: primary chicken and turkey embryo, HEp-2, Vero, BGMK, and MK-2.  相似文献   

4.
Tissue engineering of vascular grafts.   总被引:8,自引:0,他引:8  
A Ratcliffe 《Matrix biology》2000,19(4):353-357
The challenge of tissue engineering blood vessels with the mechanical properties of native vessels, and with the anti-thrombotic properties required is immense. Recent advances, however, indicate that the goal of providing a tissue-engineered vascular graft that will remain patent in vivo for substantial periods of time, is achievable. For instance, collagen gels have been used to fabricate a tissue in vitro that is representative of a native vessel: an acellular collagen tubular structure, when implanted as a vascular graft, was able to function, and to become populated with host cells. A completely cellular approach culturing cells into tissue sheets and wrapping these around a mandel was able to form a layered tubular structure with impressive strength. Culture of cells onto a biodegradable scaffold within a dynamic bioreactor, generated a tissue-engineered vascular graft with substantial stiffness and, when lined with endothelial cells, was able to remain patent for up to 4 weeks in vivo. In our experiments, use of a non-degradable polyurethane scaffold and culture with smooth muscle cells generated a construct with mechanical properties similar to native vessels. This composite tissue engineered vascular graft with an endothelial layer formed using fluid shear stress to align the endothelial cells, was able to remain patent with an neointima for up to 4 weeks. These results show that tissue engineering of vascular grafts has true potential for application in the clinical situation.  相似文献   

5.
Several three-dimensional vascular models have been developed to study the effects of adding equations for large blood vessels to the traditional bioheat transfer equation of Pennes when simulating tissue temperature distributions. These vascular models include "transiting" vessels, "supplying" arteries, and "draining" veins, for all of which the mean temperature of the blood in the vessels is calculated along their lengths. For the supplying arteries this spatially variable temperature is then used as the arterial temperature in the bioheat transfer equation. The different vascular models produce significantly different locations for both the maximum tumor and the maximum normal tissue temperatures for a given power deposition pattern. However, all of the vascular models predict essentially the same cold regions in the same locations in tumors: one set at the tumors' corners and another around the inlets of the large blood vessels to the tumor. Several different power deposition patterns have been simulated in an attempt to eliminate these cold regions; uniform power in the tumor, annular power in the tumor, preheating of the blood in the vessels while they are traversing the normal tissue, and an "optimal" power pattern which combines the best features of the above approaches. Although the calculations indicate that optimal power deposition patterns (which improve the temperature distributions) exist for all of the vascular models, none of the heating patterns studied eliminated all of the cold regions. Vasodilation in the normal tissue is also simulated to see its effects on the temperature fields.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Radiofrequency (RF) ablation using high-frequency current has become an important treatment method for patients with non-resectable liver tumors. Tumor recurrence is associated with tissue cooling in the proximity of large blood vessels. This study investigated the influence of blood flow rate on tissue temperature and lesion size during monopolar RF ablation at a distance of 10 mm from single 4- and 6-mm vessels using two different approaches: 1) an ex vivo blood perfusion circuit including an artificial vessel inserted into porcine liver tissue was developed; and 2) a finite element method (FEM) model was created using a novel simplified modeling technique for large blood vessels. Blood temperatures at the inflow/outflow of the vessel and tissue temperatures at 10 and 20 mm from the electrode tip were measured in the ex vivo set-up. Tissue temperature, blood temperature and lesion size were analyzed under physiological, increased and reduced blood-flow conditions. The results show that changes in blood flow rate in large vessels do not significantly affect tissue temperature and lesion size far away from the vessel. Monopolar ablation could not produce lesions surrounding the vessel due to the strong heat-sink effect. Simulated tissue temperatures correlated well with ex vivo measurements, supporting the FEM model.  相似文献   

7.
The microvascular organization and thermal equilibration of the primary and secondary arteries and veins that comprise the bleed off circulation to the muscle fibers from the parent countercurrent supply artery and veins are analyzed. The blood perfusion heat source term in the tissue energy equation is shown to be related to this vascular organization and to undergo a fundamental change in behavior as one proceeds from the more peripheral tissue, where the perfusion term is proportional to the Ta--Tv difference in the parent supply vessels, to the deeper tissue layers where the bleed off vessels themselves form a branching countercurrent system for each muscle tissue cylinder and the venous return temperature can vary between the local tissue temperature and Ta. The consequences of this change in behavior are examined for the Weinbaum-Jiji bioheat equation and a modified expression for the effective conductivity of perfused tissue is derived for countercurrent bleed off exchange.  相似文献   

8.
The mesenteric circulation is regulated by multiple mechanisms, there is sufficient reason to support the suspicion that local metabolic factors are especially important in the control of intestinal vasculature. Of these, adenosine, a purine nucleoside and mesenteric vasodilator, may be the messenger of the intestinal tissue to signal appropriate responses of the intestinal vessels. The evidence supporting the candidacy of the nucleoside as a local regular of mesenteric circulation may be summarized, as follows: Adenoside is present in the tissue of the gut in measurable quantities. Exogenous adenosine is a powerful dilator of mesenteric resistance vessels. Blockade of adenosine receptors in the mesenteric circulation interferes significantly with three autoregulatory phenomena, i.e., postprandial hyperemia, pressure-flow autoregulation, and reactive hyperemia. The evidence which weakens the role of adenosine as mesenteric vasoregulator includes: Findings in several reports that adenosine depressed intestinal oxygen consumption. The failure of adenosine receptors to inhibit some autoregulatory hyperemias of the gut and the rather limited amount of evidence regarding tissue adenosine release in autoregulatory responses of the gut's vasculature.  相似文献   

9.
The development of the mesenchymal structures of the human orbit was studied using 10 mu or 60 mu serial sections of orbits of foetuses of 35 to 320 mm stages (C.R. length; 2-9 months). The ontogenesis of the orbital walls, the eye muscles, the blood vessels and the connective tissue was compared. This comparison revealed that the eye muscles and their fasciae together with the adventitial layers of the larger blood vessels and nerves develop first, closely linked in time to the progress of ossification and growth of most of the orbital bones. Only the (endochondral) ossification of the ethmoid starts much later. The orbital connective tissue septa development commences later, i.e. from the third month onwards, concurrently with the development of special mesenchymal condensations, a particular capillary system and adipose tissue. About five months later the adult configuration is attained.  相似文献   

10.
A physiologically realistic arterio-venous countercurrent vessel network model consisting of ten branching vessel generations, where the diameter of each generation of vessels is smaller than the previous ones, has been created and used to determine the thermal significance of different vessel generations by investigating their ability to exchange thermal energy with the tissue. The temperature distribution in the 3D network (8178 vessels; diameters from 10 to 1000 microm) is obtained by solving the conduction equation in the tissue and the convective energy equation with a specified Nusselt number in the vessels. The sensitivity of the exchange of energy between the vessels and the tissue to changes in the network parameters is studied for two cases; a high temperature thermal therapy case when tissue is heated by a uniformly distributed source term and the network cools the tissue, and a hypothermia related case, when tissue is cooled from the surface and the blood heats the tissue. Results show that first, the relative roles of vessels of different diameters are strongly determined by the inlet temperatures to those vessels (e.g., as affected by changing mass flow rates), and the surrounding tissue temperature, but not by their diameter. Second, changes in the following do not significantly affect the heat transfer rates between tissue and vessels; (a) the ratio of arterial to venous vessel diameter, (b) the diameter reduction coefficient (the ratio of diameters of successive vessel generations), and (c) the Nusselt number. Third, both arteries and veins play significant roles in the exchange of energy between tissue and vessels, with arteries playing a more significant role. These results suggest that the determination of which diameter vessels are thermally important should be performed on a case-by-case, problem dependent basis. And, that in the development of site-specific vessel network models, reasonable predictions of the relative roles of different vessel diameters can be obtained by using any physiologically realistic values of Nusselt number and the diameter reduction coefficient.  相似文献   

11.
Bradykinin (BK) is an important endogenous mediator of microvascular flow modulation. Since the structure of the microcirculation is very different in tumor tissues than in normal tissues, bradykinin may elicit different responses in tumors. This study was designed to test the hypothesis that local administration of bradykinin increases blood flow preferentially in normal tissue relative to adjacent tumor tissue, resulting in a "vascular steal" phenomenon. Microvessel diameters (D), velocities (Vc), length densities, shear rates, and intermittent flow frequencies were measured every 10 min before, during, and after 40 min exposure to BK in rats with dorsal flap window chambers 9 days after tumor implantation. Separate studies were made of normal vessels outside the tumor margin, the hypervascular tumor periphery, and the tumor center. Bradykinin was administered with a suffusion medium flowing over the tissue at 1-2 ml/min with a BK concentration of 1.6 x 10(7) M. Administration of BK created five distinct changes in normal and tumor vessel function that varied over time, but coincidentally reached a maximum effect after 20 min exposure to BK. In normal vessels, increased Vc and D led to increased flow, which reached a peak 20 min after onset of suffusion with BK. In contrast, in centrally located tumor vessels, decreased D and Vc were observed in most vessels during the initial 10-20 min of suffusion. In addition, there was a significant increase in intermittent flow frequency in tumor central vessels, which peaked after 20 min of suffusion with BK. These five separate observations that coincided at 20 min of suffusion are consistent with a "vascular steal" phenomenon. The increase in normal microvessel D and Vc at 20 min suggests that BK causes vasodilation in arterioles. The coincident decrease in tumor microvessel D and Vc suggests that tumor feeding vessels are less able to respond to BK by vasodilating. The concomitant increase in intermittent flow frequency in tumor vessels suggests that a reduction in pressure drop occurred after 20 min exposure to BK, which is also consistent with "vascular steal." Since BK is also known to increase vascular permeability, it is possible that increases in interstitial fluid pressure brought on by exposure to BK contributed to the observed reduction in tumor blood flow. In normal vessels, reduced D and Vc, relative to peak values, were noted after 40 min suffusion with BK. Adherence of leukocytes to the vessel walls was prominent and microthrombi were also observed during this period. No evidence of such adhesion was seen in tumor vessels, although microthrombi were observed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
In vitro and in vivo studies were made on the tissue specificity of oxidation of the ketogenic amino acids, leucine, tyrosine, and lysine. In in vitro studies the abilities of slices of various tissues of rats to form 14CO2 from 14C-amino acids were examined. With liver, but not kidney slices, addition of alpha-ketoglutarate was required for the maximum activities with these amino acids. Among the various tissues tested, kidney had the highest activity for lysine oxidation, followed by liver; other tissues showed very low activity. Kidney also had the highest activity for leucine oxidation, followed by diaphragm; liver and adipose tissue had lower activities. Liver had the highest activity for tyrosine oxidation, but kidney also showed considerable activity; other tissues had negligible activity. In in vivo studies the blood flow through the liver or kidney was stopped by ligation of the blood vessels. Then labeled amino acids were injected and recovery of radioactivity in respiratory 14CO2 was measured. In contrast to results with slices, no difference was found in the respiratory 14CO2 when the renal blood vessels were or were not ligated. On the contrary ligation of the hepatic vessels suppressed the oxidations of lysine and tyrosine completely and that of leucine partially. Thus in vivo, lysine and tyrosine seem to be metabolized mainly in the liver, whereas leucine is metabolized mostly in extrahepatic tissues and partly in liver. Use of tissue slices seems to be of only limited value in elucidating the metabolisms of these amino acids.  相似文献   

13.
Autoimmunity, microangiopathy and tissue fibrosis are hallmarks of systemic sclerosis (SSc). Vascular alterations and reduced capillary density decrease blood flow and impair tissue oxygenation in SSc. Oxygen supply is further reduced by accumulation of extracellular matrix (ECM), which increases diffusion distances from blood vessels to cells. Therefore, severe hypoxia is a characteristic feature of SSc and might contribute directly to the progression of the disease. Hypoxia stimulates the production of ECM proteins by SSc fibroblasts in a transforming growth factor-β-dependent manner. The induction of ECM proteins by hypoxia is mediated via hypoxia-inducible factor-1α-dependent and -independent pathways. Hypoxia may also aggravate vascular disease in SSc by perturbing vascular endothelial growth factor (VEGF) receptor signalling. Hypoxia is a potent inducer of VEGF and may cause chronic VEGF over-expression in SSc. Uncontrolled over-expression of VEGF has been shown to have deleterious effects on angiogenesis because it leads to the formation of chaotic vessels with decreased blood flow. Altogether, hypoxia might play a central role in pathogenesis of SSc by augmenting vascular disease and tissue fibrosis.  相似文献   

14.
Matrix metalloproteinases (MMPs) are zinc-requiring enzymes that can degrade components of the extracellular matrix and that are implicated in tissue remodeling. Their role in the onset of menstruation in vivo has been proven; however, the expression and functions of MMPs and tissue inhibitors of metalloproteinases (TIMPs) in vascular structures are poorly understood. We determined by immunocytochemistry, using characterized monoclonal antibodies, the distribution of MMPs and of their inhibitors TIMP-1 and TIMP-2 in the endometrium during the menstrual cycle. MMP-1, MMP-2, MMP-3, MMP-9, TIMP-1, and TIMP-2 had differing distributions and patterns of expression. In addition to the localization of MMP-9 in the epithelium and of MMP-2, MMP-3, and MMP-1 in the stromal tissue, these MMPs were detected in the vascular structures. MMP-2 (72-kDa gelatinase) and tissue inhibitors TIMP-1 and TIMP-2 were detectable in vessels throughout the cycle. In contrast, MMP-3 (stromelysin-1) was detected only in late-secretory and menstrual endometrial vessels, while MMP-9 (92-kDa gelatinase) was detected in spiral arteries during the secretory phase and in vascular structures during the midfollicular and menstrual phases. The expression of MMP-2 and MMP-9 in endometrial vessels during the proliferative and secretory periods suggests their relationship to vascular growth and angiogenesis. The pronounced expression of MMP-3 (stromelysin-1) in the vessels situated in the superficial endometrial layer during menses suggests that this metalloproteinase initiates damage in the vascular wall during menstrual breakdown. The finding of an intense expression of TIMP-1 and TIMP-2 in the vessels delineating necrotic from non-necrotic areas during menses also suggests that they could limit tissue damage, allowing regeneration of the endometrium after menses. These data indicate that, in addition to expression in epithelial cells and stromal tissue, MMPs are expressed in endometrial vascular cells in a cycle-specific pattern, consistent with regulation by steroid hormones and with specific roles in the vascular remodeling processes occurring in the endometrium during the cycle.  相似文献   

15.
Lymphatic vessels in the developing diaphragm of the rat.   总被引:2,自引:0,他引:2  
Diaphragms of fetal, neonatal and young albino rats have been observed both under light and electron microscopes to examine the presence and distribution of lymphatic vessels and their morphological features. In fetal diaphragms of between 18 and 22 days of gestation, no normal lymphatic vessels can be seen; only after birth, specifically in neonatal and 2-day-old rats, small lymphatic vessels appear; they are in close proximity to the blood vessels in the inner areas of the muscle. As the rats get older, lymphatic vessels are also observed in the subserosa where an abundant connective tissue is present. The fine structure of diaphragmatic lymphatic vessels is different at different ages. In neonatal rats of up to 2 days, the endothelial wall is very thin and often holed. The relationships between contiguous endothelial cells are characterized by simple end-to-end or overlapping structures. The basement membrane is virtually absent. Within the first week of life, the endothelial wall becomes more complex; along the wall, complex interdigitations between two contiguous endothelial cells often touch. A discontinuous basement membrane and collagen and elastic fibers surround the vessels. In the older rats (from 14 to 25 to 140 days), next to the complex interdigitations which characterize the junction between two contiguous endothelial cells, cellular flaps interdigitate forming a channel which opens out either to the exterior or the interior of the vessel. Dense bundles of elastic and collagen fibers are closely apposed to the endothelial wall.  相似文献   

16.
The aims of this study of head and neck tissue samples were to develop an immunohistochemical protocol based on the catalysed reporter deposition (CARD) technique to enhance staining results for use in automated true colour image analysis, to assess the reproducibility of systematic tissue sampling in the angiogenic hot spot selection, and quantification of microvessel density (MVD) and other vessel characteristics. The latter data were compared between six metastasised tongue squamous cell carcinomas, vs. four non-metastasised. In comparison to the standard immunohistochemical protocol with anti-CD34 antibodies, CARD amplification resulted in both more intensely stained and larger numbers of vessels. Averaging the 10 most vascularised fields of the 40 to 60 systematically sampled fields in a tissue section resulted in an overall acceptable interobserver reproducibility for most assessed vessel parameters (r> or =0.76 and p< or =0.01). The percentage vessels with diameter <5 microm was significantly higher in the non-metastasised tongue carcinomas (p=0.02). However, for a number of tumours the effect of tissue sampling was significant.We conclude that CARD amplification is needed for reliable segmentation of vessels by image analysis systems, and that tumour heterogeneity is a limiting factor for all procedures in which tumour vascularity is assessed in a single tissue section.Figures on http://www.esacp.org/acp/2001/22-4/hannen.htm.  相似文献   

17.
The cys-cys (C-C) chemokine ligand 21 is a member of the C-C chemokines that constitute a group of heparin-binding cytokines with a pattern of four or six conserved cysteines. The CCL21 is known to be expressed in secondary lymphoid tissues, however it has rarely been reported for the expression on peripheral lymphatic vessels in somatic tissue. Here we investigated the expression of CCL21 on lymphatic vessels identified by anti-desmoplakin in uninflamed and inflamed human gingiva. In uninflamed tissue the expression of CCL21 was detected on lymphatic vessels in gingiva. In uninflamed gingiva the expression of CCL21 was detected on all lymphatic capillaries of the mucosal connective tissue papillae. There were two types of collecting lymphatic vessels in the lamina propria mucosae expressing CCL21 strongly or very weakly. In inflamed gingiva no expression of CCL21 was detected on lymphatic vessels. In all tissue sections no blood vessels expressing CCL21 were observed. These results may suggest that the expression of CCL21 is predominantly induced in the peripheral lymphatic endothelium of the uninflamed mucosal microcirculation, and that under inflamed conditions a reduction of CCL21 occurs in lymphatic endothelium.  相似文献   

18.
Studies of the vascularization of autochthonous rodent mammary tumors are limited in number, and the majority have used Factor VIII staining for blood vessel detection. Moreover, little effort has been directed at measuring the vascularization of tissue immediately adjacent to a tumor despite its central importance in the process of angiogenesis. Thirty-six chemically-induced mammary carcinomas and tissue immediately adjacent to these carcinomas were used to develop a census counting method for quantitative assessment of intra- and extra-tumor vascularization. Blood vessels were identified using antiserum directed against either CD31 or Factor VIII. Techniques used to create digitized images of all tumors and the semi-automated methods for circumscribing the extra-tumoral region are described. For Factor VIII, CD31 allowed greater discrimination of blood vessels with areas <25 microm(2) and demonstrated crisp staining of blood vessels, with minimal background and excellent preservation of tissue architecture. Census counting data support the use of CD31 for quantifying both intra- and extra-tumoral vascularization. This method provides a basis for standardizing the approach to evaluation of experimentally induced premalignant and malignant mammary lesions in rodent model systems used to investigate potential anti-angiogenic cancer preventive agents.  相似文献   

19.
The presence and localization of fibrin and fibronectin in rheumatoid nodules were studied using an indirect immunoperoxidase technique on tissue specimens fixed in formaldehyde, embedded in paraffin and pretreated with pepsin and testicular hyaluronidase. Three zones characteristic for rheumatoid nodules was recognized. Central area with necrosis, containing at least in part fibrinogen-antigenic material and fibronectin especially in the peripheral part of the necrotic area. Around the necrosis a layer of mesenchymal cells in a palisade arrangement was found. Especially in the external part of this layer fibronectin was demonstrated around and between the cells, where fibrin was absent. Peripherally, a zone of non-specific granulation tissue containing moderate amount of fibronectin decreasing towards the surround mature connective tissue, was seen. In the border of the cellular layer vessels were found in variable amount. In some of the vessels vasculitis was demonstrated with the presence of inflammatory cell infiltration, fibrin deposition and occasionally thrombosis. The pathogenesis of the inflammatory reaction in rheumatoid nodules is discussed.  相似文献   

20.
Heat transport mechanisms in vascular tissues: a model comparison   总被引:2,自引:0,他引:2  
We have conducted a parametric comparison of three different vascular models for describing heat transport in tissue. Analytical and numerical methods were used to predict the gross temperature distribution throughout the tissue and the small-scale temperature gradients associated with thermally significant blood vessels. The models are: an array of unidirectional vessels, an array of countercurrent vessels, and a set of large vessels feeding small vessels which then drain into large vessels. We show that three continuum formulations of bioheat transfer (directed perfusion, effective conductivity, and a temperature-dependent heat sink) are limiting cases of the vascular models with respect to the thermal equilibration length of the vessels. When this length is comparable to the width of the heated region of tissue, the local temperature changes near the vessels can be comparable to the gross temperature elevation. These results are important to the use of thermal techniques used to measure the blood perfusion rate and in the treatment of cancer with local hyperthermia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号