首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Correlation between periodontitis and atherosclerosis is well established, and the inherent mechanisms responsible for this relationship remain unclear. The biological function of growth arrest‐specific 6 (gas6) has been discovered in both atherosclerosis and inflammation. Inhibitory effects of gas6 on the expression of inflammatory factors in human umbilical vein endothelial cells (HUVECs) stimulated by Porphyromonas gingivalis lipopolysaccharide (P. gingivalis‐LPS) were reported in our previous research. Herein, the effects of gas6 on monocytes‐endothelial cells interactions in vitro and their probable mechanisms were further investigated. Gas6 protein in HUVECs was knocked down with siRNA or overexpressed with plasmids. Transwell inserts and co‐culturing system were introduced to observe chemotaxis and adhering affinity between monocytes and endothelial cells in vitro. Expression of gas6 was decreased in inflammatory periodontal tissues and HUVECs challenged with P. gingivalis‐LPS. The inhibitory effect of gas6 on chemotaxis and adhesion affinity between monocytes and endothelial cells was observed, and gas6 promoted Akt phosphorylation and inhibited NF‐κB phosphorylation. To our best knowledge, we are first to report that gas6 inhibit monocytes‐endothelial cells interactions in vitro induced by P. gingivalis‐LPS via Akt/NF‐κB pathway. Additionally, inflammation‐mediated inhibition of gas6 expression is through LncRNA GAS6‐AS2, rather than GAS6‐AS1, which is also newly reported.  相似文献   

2.
Francisella tularensis is capable to modulate immunobiological activities of the host cells. We focused on the expression of ICAM-1 (CD54) on J774.2 mouse macrophage cell line infected by F. tularensis live vaccine strain (LVS) in vitro as a putative marker of subsequent elimination of infection. J774.2 cell line cells were infected by F. tularensis LVS strain (multiplicity of infection, 1:100). Cell cultures were stimulated either 3 h before infection or 3 h after infection by either lipopolysaccharide (LPS) or interferon γ (IFN-γ). The expression of ICAM-1 was determined by flow cytometry 6 h after infection. The intensity of ICAM-1 expression after 6 h of J774.2 macrophage cells infection by F. tularensis is very sensitive indicator of the effective macrophages stimulation resulting in the elimination of F. tularensis infection. The mean fluorescence intensity MFI = 49.8 is set-up by our experiments as a reliable threshold of the effective elimination of F. tularensis experimental infection with 83.3% sensitivity and 96.7% specificity, respectively. Simultaneous stimulation of J774.2 macrophage cells by LPS and IFN-γ was essential to elicit the elimination of F. tularensis infection. The ICAM-1 expression determined by flow cytometry can be considered to be highly sensitive and specific approach to predict elimination of F. tularensis infection by J774.2 macrophages.  相似文献   

3.
4.
In order to obtain more information on processes leading to Borrelia burgdorferi-induced inflammation in the host, we have developed an in vitro model to study the upregulation of cell surface expression of adhesion molecules on endothelial cells by spirochetes. A mouse endothelioma cell line, derived from brain capillaries, bEnd3, was used as indicator population. bEnd3 cells were incubated with preparations of viable, inactivated or sonicated spirochetes and the expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 was monitored by immunocytochemistry and quantified by cell surface ELISA. We show that all three spirochetal preparations are able to upregulate cell surface expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 on bEnd3 cells in a dose-dependent manner. The kinetics of cell surface expression of the individual adhesion molecules in the presence of Borrelia burgdorferi showed maxima at about 50 h of incubation or later; this was distinct from results obtained with sonicated-preparations of Escherichia coli bacteria or with enterobacterial LPS where peak expression was observed between 4 h and 16 h. The fact that Borrelia burgdorferi does not contain conventional LPS suggests that the mode of induction of adhesion molecules on endothelial cells is influenced by the phenotype of bacteria. At the peak of spirochete-induced cell surface expression of adhesion molecules (≈50 h), bEnd3 cells were found to bind cells of a VLA-4+ B lymphoma line (L1-2) much more efficiently than untreated control cells. The binding of L1-2 cells to presensitized bEnd3 cells was significantly inhibited (more than 75%) in the presence of monoclonal antibodies to both VLA-4 and its endothelial counterreceptor VCAM-1. These findings demonstrate that Borrelia burgdorferi organisms are able to induce functionally active adhesion molecules on endothelial cells in vitro and suggest that E-selectin, P-selectin, ICAM-1 and VCAM-1 play an important role in the pathogenesis of spirochetal infection.  相似文献   

5.
6.
Porphyromonas gingivalis (P. gingivalis) is a pivotal pathogen of periodontitis. Our previous studies have confirmed that mitochondrial dysfunction in the endothelial cells caused by P. gingivalis was dependent on Drp1, which may be the mechanism of P. gingivalis causing endothelial dysfunction. Nevertheless, the signalling pathway induced the mitochondrial dysfunction remains unclear. The purpose of this study was to investigate the role of the RhoA/ROCK1 pathway in regulating mitochondrial dysfunction caused by P. gingivalis. P. gingivalis was used to infect EA.hy926 cells (endothelial cells). The expression and activation of RhoA and ROCK1 were assessed by western blotting and pull-down assay. The morphology of mitochondria was observed by mitochondrial staining and transmission electron microscopy. Mitochondrial function was measured by ATP content, mitochondrial DNA and mitochondrial permeability transition pore openness. The phosphorylation and translocation of Drp1 were evaluated using western blotting and immunofluorescence. The role of the RhoA/ROCK1 pathway in mitochondrial dysfunction was investigated using RhoA and ROCK1 inhibitors. The activation of RhoA/ROCK1 pathway and mitochondrial dysfunction were observed in P. gingivalis-infected endothelial cells. Furthermore, RhoA or ROCK1 inhibitors partly prevented mitochondrial dysfunction caused by P. gingivalis. The increased phosphorylation and mitochondrial translocation of Drp1 induced by P. gingivalis were both blocked by RhoA and ROCK1 inhibitors. In conclusion, we demonstrate that the RhoA/ROCK1 pathway was involved in mitochondrial dysfunction caused by P. gingivalis by regulating the phosphorylation and mitochondrial translocation of Drp1. Our research illuminated a possible new mechanism by which P. gingivalis promotes endothelial dysfunction.  相似文献   

7.
Porphyromonas gingivalis is a major pathogen in the initiation and progression of periodontal disease, which is recognized as a common complication of diabetes. ICAM‐1 expression by human gingival fibroblasts (HGFs) is crucial for regulating local inflammatory responses in inflamed periodontal tissues. However, the effect of P. gingivalis in a high‐glucose situation in regulating HGF function is not understood. The P. gingivalis strain CCUG25226 was used to study the mechanisms underlying the modulation of HGF ICAM‐1 expression by invasion of high‐glucose‐treated P. gingivalis (HGPg). A high‐glucose condition upregulated fimA mRNA expression in P. gingivalis and increased its invasion ability in HGFs. HGF invasion with HGPg induced increases in the expression of ICAM‐1. By using specific inhibitors and short hairpin RNA (shRNA), we have demonstrated that the activation of p38 MAPK and Akt pathways is critical for HGPg‐induced ICAM‐1 expression. Luciferase reporters and chromatin immunoprecipitation assays suggest that HGPg invasion increases NF‐κB‐ and Sp1‐DNA‐binding activities in HGFs. Inhibition of NF‐κB and Sp1 activations blocked the HGPg‐induced ICAM‐1 promoter activity and expression. The effect of HGPg on HGF signalling and ICAM‐1 expression is mediated by CXC chemokine receptor 4 (CXCR4). Our findings identify the molecular pathways underlying HGPg‐dependent ICAM‐1 expression in HGFs, providing insight into the effect of P. gingivalis invasion in HGFs.  相似文献   

8.
Endocannabinoids are associated with multiple regulatory functions in several tissues. The main endocannabinoids, anandamide (AEA) and 2-arachidonylglycerol (2-AG), have been detected in the gingival crevicular fluid of periodontitis patients, but the association between periodontal disease or human periodontal ligament cells (hPdLCs) and endocannabinoids still remain unclear. The aim of the present study was to examine the effects of AEA and 2-AG on the proliferation/viability and cytokine/chemokine production of hPdLCs in the presence/absence of Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS). The proliferation/viability of hPdLCs was measured using 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT)-assay. Interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemotactic protein-1 (MCP-1) levels were examined at gene expression and protein level by real-time PCR and ELISA, respectively. AEA and 2-AG did not reveal any significant effects on proliferation/viability of hPdLCs in the absence of P. gingivalis LPS. However, hPdLCs viability was significantly increased by 10–20 µM AEA in the presence of P. gingivalis LPS (1 µg/ml). In the absence of P. gingivalis LPS, AEA and 2-AG did not exhibit any significant effect on the expression of IL-8 and MCP-1 expression in hPdLCs, whereas IL-6 expression was slightly enhanced by 10 µM 2-AG and not affected by AEA. In P.gingivalis LPS stimulated hPdLCs, 10 µM AEA down-regulated gene-expression and protein production of IL-6, IL-8, and MCP-1. In contrast, 10 µM 2-AG had an opposite effect and induced a significant up-regulation of gene and protein expression of IL-6 and IL-8 (P<0.05) as well as gene-expression of MCP-1 in P. gingivalis LPS stimulated hPdLCs. Our data suggest that AEA appears to have an anti-inflammatory and immune suppressive effect on hPdLCs’ host response to P.gingivalis LPS, whereas 2-AG appears to promote detrimental inflammatory processes. In conclusion, AEA and 2-AG might play an important role in the modulation of periodontal inflammation.  相似文献   

9.
10.
Lipopolysaccharide (LPS)-induced lung inflammation is known to increase pulmonary intercellular adhesion molecule-1 (ICAM-1) expression. In the present study, L2 cells, a cell line of alveolar epithelial cells, were stimulated with LPS, and ICAM-1 expression was studied. ICAM-1 protein on L2 cells peaked at 6 (38% increase; P < 0.01) and 10 (48% increase; P < 0.001) h after stimulation with Escherichia coli and Pseudomonas aeruginosa LPS, respectively. ICAM-1 mRNA expression was markedly increased, with a peak at 2-4 (E. coli) and 4-6 (P. aeruginosa) h. Adherence assays of neutrophils to LPS-stimulated L2 cells showed a threefold increase in adherence (P < 0.001). Pretreatment of the neutrophils with anti-lymphocyte function-associated antigen-1 and anti-Mac-1 antibodies reduced adherence by 54% (P < 0.001). Analysis of immunofluorescence staining for ICAM-1 showed an exclusive apical expression of ICAM-1. These results indicate that LPS upregulates functional active ICAM-1 on the apical part of the membrane in rat pneumocytes.  相似文献   

11.
12.

Background

One of the microorganisms from dental plaque associated with severe inflammatory responses in infectious endocarditis is Porphyromonas gingivalis. It is a Gram-negative bacteria harvested from chronic periodontitis patients. Lipopolysaccharide (LPS) obtained from P. gingivalis promotes the expressions of interleukin-1 (IL-1), IL-6 and tumor necrosis factor alpha (TNF-α). Flavonoids are thought to participate in processes that control inflammation, such as the expression of cyclooxygenase-2 (COX-2).

Methods

We investigated the effects of luteolin, quercetin, genistein and quercetagetin on cardiomyoblasts treated with LPS alone or in combination with following inhibitors p38 (SB203580), ERK (PD98059), JNK (SP600125) and PKC (Calphostin C) for 1 h. The kinase activation and COX-2 expression levels were determined at the gene and protein levels.

Results

These flavonoids are considered to inhibit the activation of mitogen-activated protein kinase (MAPK) and the degradation of inhibitor of kappa B-alpha (IκB-α). They also play a role in COX-2 expression.

Conclusion

We conclude that the tested flavonoids inhibit inflammatory responses induced by LPS in H9c2 cells.
  相似文献   

13.
Porphyromonas gingivalis is a major bacterial species implicated in chornic periodontitis, a disease characterized by inflammatory destruction of the tooth supporting tissues. Its main virulence factors are lipopolysaccharide (LPS) and gingipains, a group of cysteine proteinases. Interleukin (IL)-18 is a potent pro-inflammatory cytokine with structural similarities to IL-1β. This study aimed to investigate if P .gingivalis regulates IL-1β and IL-18 in monocytic cells. Monomac-6 cells were challenged with P. gingivalis culture supernatants. Quantitative real-time PCR and ELISA were used to investigate IL-1β and IL-18 mRNA expression and protein secretion, respectively. P. gingivalis enhanced IL-1β and IL-18 mRNA expression, the former being induced earlier, but transiently. IL-18 up-regulation was not affected by P. gingivalis heat-inactivation or chemical inhibition of its gingipains, whereas both treatments resulted in 50% reduction of IL-1β expression. Purified P. gingivalis LPS enhanced both IL-1β and IL-18 expression. However, only IL-1β, but not IL-18, secretion was detected, and was up-regulated by P. gingivalis. In conclusion, although IL-1β and IL-18 belong to the same cytokine family, their gene expression and secretion are differentially regulated in human monocytic cells in response to P. gingivalis. Therefore, cytokines of the IL-1 family may participate via different pathways in the complex pathogenesis of periodontitis.  相似文献   

14.
The maintenance of diminished acid ceramidase (ASAH1) gene expression leading to the accumulation of antiproliferative intracellular ceramides in oral squamous cell carcinoma (OSCC) has emerged as a prospective oral cancer therapeutic regimen. Our published study demonstrated that the key periodontal pathogen Porphyromonas gingivalis downregulates the expression patterns of ASAH1 mRNA in normal epithelial cells in vitro. Therefore, P. gingivalis may also beneficially diminish the expression of ASAH1 in OSCC. Because a uniquely structured P. gingivalis-derived phosphoethanolamine dihydroceramide (PEDHC) inhibits the proliferation of normal human fibroblasts, this study aimed to test the effect of PEDHC on the survival of human oral squamous OECM-1 cells in vitro. We demonstrated that the P. gingivalis dihydroceramide-null (ΔPG1780) strain upregulates the expression of ASAH1 mRNA and promotes aggressive proliferation and migration of OECM-1 cells compared to the parent P. gingivalis-W83 strain. In addition, the intracellular concentration of ceramides was dramatically elevated in OECM-1 cells exposed to PEDHC in vitro. Furthermore, PEDHC inhibited expression patterns of ASAH1 mRNA as well as some genes associated with degradation of the basement membranes and extracellular matrix, for example, MMP-2, ADAM-17 and IL-6, in OECM-1 cells. Altogether, these data indicated that PEDHC produced by P. gingivalis inhibits acid ceramidase expression, promotes intracellular ceramide accumulation and suppresses the survival and migration of OSCC cells in vitro. Further studies are needed to determine molecular mechanisms of PEDHC-mediated inhibitory effect(s) on OSCC using in vivo models of oral cancer.  相似文献   

15.
Production of IL‐1β typically requires two‐separate signals. The first signal, from a pathogen‐associated molecular pattern, promotes intracellular production of immature cytokine. The second signal, derived from a danger signal such as extracellular ATP, results in assembly of an inflammasome, activation of caspase‐1 and secretion of mature cytokine. The inflammasome component, Nalp3, plays a non‐redundant role in caspase‐1 activation in response to ATP binding to P2X7 in macrophages. Gingival epithelial cells (GECs) are an important component of the innate‐immune response to periodontal bacteria. We had shown that GECs express a functional P2X7 receptor, but the ability of GECs to secrete IL‐1β during infection remained unknown. We find that GECs express a functional Nalp3 inflammasome. Treatment of GECs with LPS or infection with the periodontal pathogen, Porphyromonas gingivalis, induced expression of the il‐1β gene and intracellular accumulation of IL‐1β protein. However, IL‐1β was not secreted unless LPS‐treated or infected cells were subsequently stimulated with ATP. Conversely, caspase‐1 is activated in GECs following ATP treatment but not P. gingivalis infection. Furthermore, depletion of Nalp3 by siRNA abrogated the ability of ATP to induce IL‐1β secretion in infected cells. The Nalp3 inflammasome is therefore likely to be an important mediator of the inflammatory response in gingival epithelium.  相似文献   

16.
Tobacco smoking is considered one of the most significant environmental risk factors for destructive periodontal disease. The effect of smoking on periodontopathic microbiota has not yet been elucidated, as previous studies failed to identify a concrete relationship between periodontopathic microorganisms and smoking. However, it is likely that smoking, as an environmental stress factor, may affect the behavior of dental plaque microorganisms, ultimately leading to alteration of the host-parasite interaction. The goal of this study was to examine the effect of nicotine, a major component of tobacco, on the growth and protein expression of the crucial periodontal pathogen Porphyromonas gingivalis. The growth of P. gingivalis 381 was measured after bacterial cells were cultivated in liquid broth containing various nicotine concentrations. First, P. gingivalis cells were allowed to grow in the presence of a single dose of nicotine (the single exposure protocol) at 0, 1, 2, 4, and 8 mg/L, respectively. Second, P. gingivalis cells were exposed to five consecutive doses of nicotine (the multiple exposure protocol) at 0, 1, 2, and 4 mg/L, respectively. Bacterial growth was measured by optical density and protein expression was analyzed by SDS-PAGE and 2-D gel electrophoresis. In the single nicotine exposure protocol, it was observed that the growth of P. gingivalis 381 was inhibited by nicotine in a dose-dependent manner. In the multiple nicotine exposure protocol, the growth rate of P. gingivalis increased with each subsequent nicotine exposure, even though bacterial growth was also inhibited in a dose dependent fashion. SDS-PAGE and 2-D gel electrophoresis analyses revealed a minor change in the pattern of protein expression, showing differences in proteins with low molecular weights (around 20 kDa) on exposure to nicotine. The results of this study suggest that nicotine exerts an inhibitory effect on the growth of P. gingivalis, and has a potential to modulate protein expression in P. gingivalis.  相似文献   

17.

Background

Periodontitis is an inflammatory disease caused by pathogenic microorganisms, such as Porphyromonas gingivalis, and characterized by the destruction of the periodontium. Obese individuals have an increased risk for periodontitis and show decreased serum levels of adiponectin. This in-vitro study was established to examine whether adiponectin modulates critical effects of lipopolysaccharide (LPS) from P. gingivalis on oral epithelial cells (OECs).

Methodology/Principal Findings

The presence of adiponectin and its receptors in human gingival tissue samples and OECs was analyzed by immunohistochemistry and PCR. Furthermore, OECs were treated with LPS and/or adiponectin for up to 72 h, and the gene expression and protein synthesis of pro- and anti-inflammatory mediators, matrix metalloproteinases (MMPs) and growth factors were analyzed by real-time PCR and ELISA. Additionally, cell proliferation, differentiation and in-vitro wound healing were studied. The nuclear translocation of NFκB was investigated by immunofluorescence. Gingival tissue sections showed a strong synthesis of adiponectin and its receptors in the epithelial layer. In cell cultures, LPS induced a significant up-regulation of interleukin (IL) 1β, IL6, IL8, MMP1 and MMP3. Adiponectin abrogated significantly the stimulatory effects of LPS on these molecules. Similarly, adiponectin inhibited significantly the LPS-induced decrease in cell viability and increase in cell proliferation and differentiation. Adiponectin led to a time-dependent induction of the anti-inflammatory mediators IL10 and heme oxygenase 1, and blocked the LPS-stimulated NFκB nuclear translocation.

Conclusions/Significance

Adiponectin may counteract critical actions of P. gingivalis on oral epithelial cells. Low levels of adiponectin, as observed in obese individuals, may increase the risk for periodontal inflammation and destruction.  相似文献   

18.
Periodontal disease destroys the tooth‐supporting tissues as a result of chronic inflammation elicited by bacterial accumulation on tooth surfaces. Porphyromonas gingivalis is a major periodontal pathogen, with a significant capacity to perturb connective tissue homeostasis and immune responses in the periodontium, attributed to its virulence factors, including a group of secreted cysteine proteases (gingipains). PAR‐2 (protease‐activated receptor‐2) is a G‐protein‐coupled receptor activated upon proteolytic cleavage, mediating intracellular signalling events related to infection and inflammation, such as cytokine production. GF (gingival fibroblasts) and T cells have central roles in periodontal inflammation, which can potentially be mediated by PAR‐2. The aims of this study were to investigate the effects of P. gingivalis on PAR‐2 gene expression in human GF and Jurkat T cells, using quantitative real‐time PCR, and to evaluate the involvement of gingipains. After 6 h of challenge with ascending concentrations of P. gingivalis, PAR‐2 expression was up‐regulated in both cell types by approximately 5‐fold, compared with the control. The P. gingivalis concentration required for maximal PAR‐2 induction was 4‐fold greater in GF than Jurkat T cells. Heat inactivation or chemical inhibition of cysteine proteases abolished the capacity of P. gingivalis to induce PAR‐2 expression in Jurkat T cells. In conclusion, P. gingivalis can induce PAR‐2 expression in GF and Jurkat T cells, potentially attributed to its gingipains. These findings denote that P. gingivalis may perturb the host immune and inflammatory responses by enhancing PAR‐2 expression, thus contributing to the pathogenesis of periodontal disease.  相似文献   

19.
It has been suggested that microRNAs (miRs) are involved in the immune regulation of periodontitis. However, it is unclear whether and how miRs regulate the function of B cells in the context of periodontitis. This study is to explore the role of miR-146a on the inflammatory cytokine production of B cells challenged by Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS). Primary B cells were harvested from mouse spleen. Quantitative real-time polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA) were used to detect the expression of inflammatory cytokines in B cells in the presence or absence of P. gingivalis LPS and/or miR-146a. Bioinformatics, luciferase reporter assay and overexpression assay were used to explore the binding target of miR-146a. Our results showed that miR-146a level in B cells was elevated by P. gingivalis LPS stimulation, and the mRNA expressions of interleukin (IL)-1β, 6 and 10, and IL-1 receptor associated kinase-1 (IRAK1), but not TNF receptor associated factor 6 (TRAF6), were also upregulated. The expression levels of IL-1β, 6, 10 and IRAK1 were reduced in the presence of miR-146a mimic, but were elevated by the addition of miR-146a inhibitor. MiR-146a could bind with IRAK1 3′ untranslated region (UTR) but not TRAF6 3′-UTR. Overexpression of IRAK1 reversed the inhibitory effects of miR-146a on IL-1β, 6 and 10. In summary, miR-146a inhibits inflammatory cytokine production in B cells through directly targeting IRAK1, suggesting a regulatory role of miR-146a in B cell-mediated periodontal inflammation.  相似文献   

20.
Lipopolysaccharide (endotoxin) tolerance is well described in monocytes and macrophages, but is less well characterized in endothelial cells. Because intestinal microvascular endothelial cells exhibit a strong immune response to LPS challenge and play a critical regulatory role in gut inflammation, we sought to characterize the activation response of these cells to repeated LPS exposure. Primary cultures of human intestinal microvascular endothelial cells (HIMEC) were stimulated with LPS over 6-60 h and activation was assessed using U937 leukocyte adhesion, expression of E-selectin, ICAM-1, VCAM-1, IL-6, IL-8, manganese superoxide dismutase, HLA-DR, and CD86. Effect of repeat LPS stimulation on HIMEC NF-kappaB and mitogen-activated protein kinase (MAPK) activation, generation of superoxide anion, and Toll-like receptor 4 expression was characterized. LPS pretreatment of HIMEC for 24-48 h significantly decreased leukocyte adhesion after subsequent LPS stimulation. LPS pretreatment inhibited expression of E-selectin, VCAM-1, IL-6, and CD86, while ICAM-1, IL-8, and HLA-DR were not altered. Manganese superoxide dismutase expression increased with repeated LPS stimulation, with a reduction in intracellular superoxide. NF-kappaB activation was transiently inhibited by LPS pretreatment for 6 h, but not at later time points. In contrast, p44/42 MAPK, p38 MAPK, and c-Jun N-terminal kinase activation demonstrated inhibition by LPS pretreatment 24 or 48 h prior. Toll-like receptor 4 expression on HIMEC was not altered by LPS. HIMEC exhibit endotoxin tolerance after repeat LPS exposure in vitro, characterized by diminished activation and intracellular superoxide anion concentration, and reduced leukocyte adhesion. HIMEC possess specific mechanisms of immunoregulatory hyporesponsiveness to repeated LPS exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号