首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA sequence organization in the soybean plant   总被引:3,自引:0,他引:3  
The arrangement of repetitive and nonrepetitive DNA sequences in the soybean genome was ascertained by a comparison of the reassociation kinetics of short (250 nucleotides) and long (2700 nucleotides) DNA fragments, the size distribution of S-1 nuclease resistant repetitive duplexes, and a direct assay of the spectrum of DNA sequences present on long DNA fragments enriched in repetitive DNA. These measurements reveal the following: (1) The 1N genome size of the soybean plant is 1.97 pg. (2) Approximately 40% of the soybean genome consists of nonrepetitive or single-copy DNA sequences, while 60% is repetitive DNA. (3) The repetitive DNA is partitioned into three discrete classes termed very fast, fast, and slow, containing DNA sequences repeated an average of 290,000, 2800, and 19 times each. (4) Approximately 35–50% of the soybean genome is arranged in a short-period interspersion pattern of 250 nucleotide slow sequences and single-copy DNA averaging up to 2700 nucleotides in length. (5) From 30% to 45% of the soybean genome is organized into long stretches of repetitive DNA at least 1500 nucleotides in length. (6) Minimal interspersion of repetitive sequence classes occurs in soybean DNA.These experiments were supported by NSF Grants BMS74-21461 and PCM76-24593 and were conducted while the author was in the Department of Biology, Wayne State University, Detroit, Michigan.  相似文献   

2.
Genome structure and divergence of nucleotide sequences in echinodermata   总被引:1,自引:0,他引:1  
The arrangement of repetitive and single-copy DNA sequences has been studied in DNA of some species of Echinodermata — sea urchin, starfishes and sea-cucumber. Comparison of the reassociation kinetics of short and long DNA fragments indicates that the pattern of DNA sequence organization of all these species is similar to the so called Xenopus pattern characteristic of the genomes of most animals and plants. However, substantional variations have been found in the amount of repetitive nucleotide sequences in DNA of different species and in the length of DNA regions containing adjacent single-copy and repetitive sequences. Measurements of the size of S1-nuclease resistant reassociated repetitive DNA sequences show a variability of ratios between long and short repetitive DNA sequences of different species. — The degree of divergence of short and long repetitive DNA sequences and single-copy DNA was studied by molecular hybridization of the sea urchin Strongylocentrotus intermedius 3H-DNA with the DNA of other species and by determination of the thermostability of the hybridized molecules so obtained. All three fractions of S. intermedius DNA contain sequences homologous to DNA of the other echinoderm species studied. The results obtained suggest that short repetitive DNA sequences are those which have been most highly conserved throughout the evolution of Echinodermata. A new hypothesis is proposed to explain the nature of the evolutionary changes in DNA sequence interspersion patterns.  相似文献   

3.
The genomes of four primate species, belonging to the families Pongidae (chimpanzee, gorilla, and orangutan) and Hylobatidae (gibbons), have been analyzed for the presence and organization of two human GC-rich heterochromatic repetitive sequences: Satellite (Sat) and LongSau (LSau) repeats. By Southern blot hybridization and PCR, both families of repeats were detected in all the analyzed species, thus indicating their origin in an ape ancestor. In the chimpanzee and gorilla, as in man, Sat sequences showed a 68-bp Sau3A periodicity and were preferentially organized in large clusters, whereas in the orangutan, they were organized in DNA fragments of 550 bp, which did not seem to be characterized by a tandem organization. On the contrary, in each of the analyzed species, the bulk of LSau sequences showed a longer Sau3A periodicity than that observed in man (450–550 bp). Furthermore, only in the chimpanzee genome some of LSau repeats seemed to be interspersed within blocks of Sat sequences. This sequence organization, which also characterizes the human genome, is probably absent in the gorilla. In fact, the analysis of a gorilla genomic library suggested that LSau repeats are not preferentially in linkage with Sat sequences. Moreover, LSau sequences were found in a genomic sector characterized by the simultaneous presence of L1 and (CA) repeats, as well as of anonymous sequences and known genes. In spite of the different sequence organization, the nucleotide differences between complete human and gorilla LSau repeats were very few, whereas one gorilla LSau repeat, interrupted by a probably-truncated L1 transposon, showed a higher degree of divergence. Besides the gorilla, this unusual sequence organization was detected in man, and, to a lesser extent, in the chimpanzee. Correspondence to: R. Meneveri  相似文献   

4.
The unicellular photoheterotrophic cyanobacterium Synechococcus sp. PCC 7002 was shown to encode two genes for the Photosystem II reaction center core protein D2 and one gene for the reaction center chlorophyhll-binding protein CP43. These three genes were cloned and their DNA sequences determined along with their flanking DNA sequences. Northern hybridization experiments show that both genes which encode D2, psbD1 and psbD2, are expressed at roughly equivalent levels. For each of the two psbD genes, there are 18 nucleotide differences among the 1059 nucleotides which are translated. The DNA sequences surrounding the coding sequences are nearly 70% divergent. Despite the DNA sequence differences in the genes, the proteins encoded by the two genes are predicted to be identical. The proteins encoded by psbD1 and psbD2 are 92% homologous to other sequenced cyanobacterial psbD genes and 86% homologous to sequenced chloroplast-encoded psbD genes.The single gene for CP43, psbC, overlaps the 3 end of psbD1 and is co-transcribed with it. Results from previous sequencing of psbC genes encoded by chloroplasts suggest that the 5 end of the psbC gene overlaps the 3 end of the coding sequence of psbD by 50 nucleotides. In Synechococcus sp. PCC 7002, the methionine codon previously proposed to be the start codon for psbC is replaced by an ACG (threonine) codon. We propose an alternative start for the psbC gene at a GTG codon 36 nucleotides downstream from the threonine codon. This GTG codon is preceded by a consensus E. coli-like ribosome binding sequence. Both the GTG start codon and its preceding ribosome binding sequence are conserved in all psbC genes sequenced from cyanobacteria and chloroplasts. This suggests that all psbC genes start at this alternative GTG codon. Based on this alternative start codon, the gene product is 85% identical to other cyanobacterial psbC gene products and 77% identical to eucaryotic chloroplast-encoded psbC gene products.  相似文献   

5.
Preformed transposase-transposon complexes called Transposomes have been electroporated into bacterial cells. The magnesium dependent process of insertion of the transposable element into bacterial chromosomal DNA occurs in vivo. The transposition efficiency of a Transposome containing a kanamycin marker was between 1.0×104and 1.0×107kanamycin resistant clones per microgram of transposon DNA in three gram-negative enteric bacterial species. Transposon integration sites were examined by direct genome sequencing of chromosomal DNA. Genomic DNA was isolated from transposition clones and directly cycle sequenced with primers specific for the ends of the transposon. The precise location of genome interruption for a transposition clone was identified by homology to known genes or sequences. Mutant phenotypes were rapidly correlated with genomic insertions sites.  相似文献   

6.
Summary The slow reassociating fraction of mouse DNA (unique DNA), when allowed to reassociate in 0.14 m sodium phosphate buffer at 50 °C showed a biphasic melting curve with a transition at 78–80 °C. On the basis of this feature, the slow reassociating DNA was separated preparatively into two fractions: unique DNA I and II. Their duplexes showed differences with respect to thermal stability, S1 nuclease resistance and rate of reassociation. About one third of the sequences in each fraction were fraction-specific. The conclusion was drawn that for unique DNA I these should be the low repetitive or single copy related sequences (multigene families) and for unique DNA II—the unrelated single copy sequences or recent families of low repetitive not yet diverged sequences.  相似文献   

7.
Biomethanation is one of the desirable options for obtaining clean fuel from abundant renewable biomass resources. Improvement of biomethane production may be achieved by using improved strains of microbes, particularly the terminal microbes – the methanogens. Attempts have been made to improve the efficiency of the methanogens isolated from local sources by subjecting the methanogens to mutagenic changes by physical (by irradiation, neutron bombardment) or chemical (by addition of chemicals like acridine orange, colchicine) means. The effects of the treated methanogens on biomethanation were studied. Irradiation or neutron bombardment mutagenesis was dose-dependent and time-dependent. High doses proved to be lethal but methanogens were found to be to some extent radiation resistant when subjected to irradiation at small doses for short duration (5–10 s). No or marginal improvement of methane production occurred for the two strains TDM and TRM. Improvement of methane production occurred from successive transfers of radiation treated strain SSM. Chemical mutagens invariably inhibited biomethanation and the inhibition was dose dependent.  相似文献   

8.
Summary In this paper, the results of the preceding electrophysiological study of sodium-alanine cotransport in pancreatic acinar cells are compared with kinetic models. Two different types of transport mechanisms are considered. In the simultaneous mechanism the cotransporterC forms a ternary complexNCS with Na+ and the substrateS; coupled transport of Na+ andS involves a conformational transition between statesNCS andNCS with inward- and outward-facing binding sites. In the consecutive (or ping-pong) mechanism, formation of a ternary complex is not required; coupled transport occurs by an alternating sequence of association-dissociation steps and conformational transitions. It is shown that the experimentally observed alanine- and sodium-concentration dependence of transport rates is consistent with the predictions of the simultaneous model, but incompatible with the consecutive mechanism. Assuming that the association-dissociation reactions are not rate-limiting, a number of kinetic parameters of the simultaneous model can be estimated from the experimental results. The equilibrium dissociation constants of Na+ and alanine at the extracellular side are determined to beK N <-64mm andK S <-18mm. Furthermore, the ratioK N /K N S of the dissociation constants of Na+ from the binary (NC) and the ternary complex (NCS) at the extracellular side is estimated to be <-6. This indicates that the binding sequence of Na+ andS to the transporter is not ordered. The current-voltage behavior of the transporter is analyzed in terms of charge translocations associated with the single-reaction steps. The observed voltage-dependence of the half-saturation concentration of sodium is consistent with the assumption that a Na+ ion that migrates from the extracellular medium to the binding site has to traverse part of the transmembrane voltage.  相似文献   

9.
DNA sequence organization in the genome of Nicotiana tabacum   总被引:2,自引:2,他引:0  
The genome of Nicotiana tabacum was investigated by DNA/DNA reassociation for its spectrum of DNA repetition components and pattern of DNA sequence organization. The reassociation of 300 nucleotide DNA fragments analyzed by hydroxyapatite chromatography reveals the presence of three major classes of DNA differing in reiteration frequency. Each class of DNA was isolated and characterized with respect to kinetic homogeneity and thermal properties on melting. These measurements demonstrate that the genome of N. tabacum has a 1C DNA content of 1.65 pg and that DNA sequences are represented an average of 12,400, 252, and 1 times each. — The organization of the DNA sequences in the N. tabacum genome was determined from the reassociation kinetics of long DNA fragments as well as S1 nuclease resistance and hyperchromicity measurements on DNA fragments after annealing to C0t values at which only repetitive DNA sequences will reassociate. At least 55% of the total DNA sequences are organized in a short period interspersion pattern consisting of an alternation of single copy sequences, averaging 1400 nucleotides, with short repetitive elements approximately 300 nucleotides in length. Another 25% of the genome contains long repetitive DNA sequences having a minimal genomic length of 1500 nucleotides. These repetitive DNA sequences are much less divergent than the short interspersed DNA sequence elements. These results indicate that the pattern of DNA sequence organization in the tobacco genome bears remarkable similarity to that found in the genomes of most animal species investigated to date.  相似文献   

10.
The molecules of the fluorescent dye acridine orange (AO) bind to DNA in such a way that the absorption and emission dipoles lie on a plane perpendicular to the DNA axis. For this reason, definite fluorescence polarization should correspond to each mode of spatial DNA packing. A chromosome, considered as an axially symmetrical ensemble of DNA, was characterized by two experimental parameters, P and P , i.e., by polarizations of fluorescence excited by light polarized parallel and perpendicular to the symmetry axis. In view of the sequential order in the packing levels of DNA fiber in a chromosome, it was suggested that, under mechanical stretching, the highest level is disrupted first, then the others, in the order of their sequence.Isolated chromosomes of Chironomus thummi were stained with AO and stretched with needles of a micromanipulator. From the changes of P and P measured during stretching it was concluded the polytene chromosome bands have three, at least, DNA packing levels, tentatively described as 100 å fiber, 250 å coil and chromomere.  相似文献   

11.
During the early cleavage divisions in some Ascarids, parts of the chromosomes are eliminated from the somatic blastomeres (chromatin diminution, Boveri, 1887) while the chromosomes in the germ line cells maintain their integrity. To characterize the germ line and soma genome, DNA was isolated from gametes and embryonic somatic cells of two Ascarid species,Parascaris equorum var. univalens andAscaris suum. It was shown that the germ line limited DNAs of these species have the same density and almost identical reassociation kinetics: in CsCl the predominant component of the germ line limited DNA ofP. equorum andA. suum has the buoyant density of 1.697g/cm3, while soma DNA of both species bands at 1.700 g/cm3. InP. equorum there is a small additional germ line limited satellite DNA component with the density of 1.690 g/cm3, identical to that of mitochondrial DNA of both organisms. Comparison of the reassociation kinetics of germ line and soma DNA demonstrates for both species that the eliminated DNA sequences are highly repetitive. In contrast to these similarities between the germ line limited DNAs ofP. equorum andA. suum the analysis of their base composition revealed differences (40% guanine plus cytosine inP. equorum and 36% inA. suum). The only very fast reassociating DNA sequences which we could isolate from soma DNA was demonstrated to be foldback DNA. The reassociation kinetics of totalA. suum soma DNA was investigated by hydroxylapatite chromatography. Least squares analysis of the data revealed about 10% of intermediate repetitive DNA sequences. Their interspersion between single copy DNA sequences was analyzed by comparing the reassociation kinetics of DNA fragments 0.35 and 7.2 kilobases long. Thus the DNA sequence arrangement ofAscaris does not follow the short period interspersion pattern observed in most organism.  相似文献   

12.
To study the genome diversity of bacteriophages from geographically distant natural populations, new giant KZ-like Pseudomonas aeruginosa phages isolated in two different regions were compared with earlier known phages of three species (KZ, Lin68, EL). A broad spectrum of lytic activity was demonstrated for all KZ-like phages. Phages of the KZ species proved to be common in natural populations of various regions, while EL- and Lin68-related phages were extremely rare. Most KZ-related phages had unique DNA restriction patterns, but the differences between these were only minor, and the genomes did not contain nonhomologous fragments. The spectrum of capsid polypeptides proved to be conserved in each species, and was proposed as a character necessary and sufficient for express classification of phages with an accuracy of species. Phages isolated in different geographical regions showed no substantial difference. Some phages only slightly differing in DNA restriction pattern from KZ may be used to study the origin of KZ genes coding for orthologs of proteins of unrelated species (other phages, pathogenic bacteria, eukaryotes).  相似文献   

13.
Giemsa C-banded idiograms that allow the identification of all chromosomes have been prepared for Allium cepa, Ornithogalum virens, and Secale cereale. An analysis of A. cepa DNA has determined that: (1) It has the lowest GC content so far reported for an angiosperm (32%). (2) It appears to have no satellite DNA detectable by CsCl or Cs2SO4-Ag+ density gradient centrifugation. (3) Aside from fold back DNA and unreactable fragments, a C0t curve indicates that most of the DNA can be adequately described as two major middle repetitive components (Fractions I and II) and a single copy component (Fraction III). And (4) most of the repeated DNA sequences are involved in a short period interspersion pattern with single copy and other repetitive sequences. In situ hybridization of tritiated cRNAs to fold back, long repeated, and Fraction I DNA from A. cepa to squash preparations of chromosomes and nuclei from A. cepa, O. virens, and S. cereale root tips indicates: (1) Sequences complementary to fold back DNA are scattered throughout the genome of A. cepa except for telomeric heterochromatin and nucleolus organizers while they are not detectable in the genomes of O. virens or S. cereale. (2) Although long repeated sequences are scattered throughout the genome of A. cepa, they are concentrated to some extent in telomeric heterochromatin and nucleolus organizers (NOs). Sequences complementary to long repeats of A. cepa occur primarily in chromosome three of O. virens while these sequences are more common in the genome of more distantly related S. cereale. (3) Fraction I DNA is scattered throughout the genome of A. cepa while it is hardly detectable in the genomes of O. virens and S. cereale. These results are discussed in regard to the evolutionary conservation and function of repeated DNA sequences.  相似文献   

14.
The frequency classes and organization of the main component (mc) DNA of a crustacean, the land crab, Gecarcinus lateralis, have been characterized. The reassociation kinetics of 380 nucleotide long mcDNA fragments show that approximately 50% contain sequences repeated more than 800 times. Present in few, if any, copies are sequences repeated from 2 to 800 times. The remainder of the DNA reassociates as single copy sequences with a rate constant consistent with the organism's genome size. The reassociation kinetics of highly sheared DNA fragments of every true crab studied (Vaughn, 1975; Christie et al., 1976) are similar to each other and different from those of other invertebrate DNAs (Goldberg et al., 1975). Each of these genomes has a paucity of sequences repeated from 10 to 800 times and an abundance of highly repeated sequences. To determine if sequences repeated more than 800 times are interspersed with single copy sequences, we examined the arrangement of repetitive and non-repetitive sequences in mcDNA. The reassociation and melting properties of partially duplex mcDNA fragments of increasing lengths show that at least 75% of the DNA is organized in an interspersed pattern. In this pattern, single copy sequences with an average length of 800–900 nucleotides are interspersed with repetitive sequences. S1 nuclease digestion of reassociated 3100 nucleotide fragments indicates that 44% of the mcDNA is repetitive and that one-third of the repetitive sequences (average length=285 nucleotides) are interspersed with single copy sequences. We conclude that repetitive sequencies are interspersed with most of the single copy sequences in an interspersion pattern similar to that of Xenopus rahter than to that of another arthropod, Drosophila.Operated by Union Carbide Corporation for the Energy Research and Development Administration  相似文献   

15.
Essentially all of the sequences in the pea (Pisum sativum) genome which reassociate with single copy kinetics at standard (Tm -25°C) criterion follow repetitive kinetics at lower temperatures (about Tm-35°C). Analysis of thermal stability profiles for presumptive single copy duplexes show that they contain substantial mismatch even when formed at standard criterion. Thus most of the sequences in the pea genome which are conventionally defined as single copy are actually fossil repeats — that is, they are members of extensively diverged (mutuated) and thus presumably ancient families of repeated sequences. Coding sequences as represented by a cDNA probe prepared from poly-somal poly(A) + mRNA reassociate with single copy kinetics regardless of criterion and do not form mismatched duplexes. The coding regions thus appear to be composed of true single copy sequences but they cannot represent more than a few percent of the pea genome. Ancient diverged repeats are present, but not a prominent feature of the smaller mung bean (Vigna radiata) genome. An extension of a simple evolutionary model is proposed in which these and other differences in genome organization are considered to reflect different rates of sequence amplification or genome turnover during evolution. The model accounts for some of the differences between typical plant and animal genomes.  相似文献   

16.
The molecular structure of the lampbrush loopforming fertility gene nooses from the short arm of the Y chromosome of Drosophila hydei is described on the basis of cloned DNA sequences which are characteristic for the sequence organization in the lampbrush loop. Y chromosomal lampbrush loops are organized into tandem repeat clusters of loop-specific repetitive DNA sequences and in interspersed repetitive DNA sequences with homologies elsewhere in the genome. In this paper, the basic properties of a repeat unit of the tandemly repeated sequence family ay1 are described. Moreover, it is shown that a loop contains several different domains carrying repeat clusters of the same repeated DNA family but with divergent sequence character. One of these clusters is characterized by an internal duplication of the basic repeat unit. We propose that the tandem repeat DNA family ay1 forms a frame of the lampbrush loop which is required for structural and functional reasons.  相似文献   

17.
18.
tRNA sequences were analyzed for sequence features correlated with known classes of aminoacyl-tRNA synthetase enzymes. The tRNAs were searched for distinguishing nucleotides anywhere in their sequences. The analyses did not find nucleotides predictive of synthetase class membership. We conclude that such nucleotides never existed in tRNA sequences or that they existed and were lost from many of the tRNA sequences during evolution.Based on a presentation made at a workshop—Aminoacyl-tRNA Synthetases and the Evolution of the Genetic Code—held at Berkeley, CA, July 17–20, 1994 Correspondence to: H.B. Nicholas, Jr.  相似文献   

19.
A multivariate morphometric study of theCardamine pratensis group is presented, based on 84 population samples collected from the Carpathian and Pannonian area in the Czech Republic, Slovakia, Poland, Ukraine, Hungary, and Romania. Among the multivariate methods, principal component analysis, cluster analysis, and classificatory and canonical discriminant analysis were used. The analysis of chromosome numbers from all populations studied showed wide variation. The morphometric study showed that not all groups of populations characterised by their chromosome numbers and geographical criteria are morphologically, and thus taxonomically, distinguishable. Besides the morphologically well characterised speciesCardamine dentata andC. rivularis, the following species were recognised in the area studied:C. matthioli, C. majovskii andC. pratensis. Within the last species, besides the typical populations, two diploid types are provisionally recognised: type ucranica and type rivularis auct..  相似文献   

20.
Three HLA-DR genes were isolated from a Swedish HLA-DR3/4 insulin-dependent diabetes mellitus (IDDM) patient and characterized by restriction endonuclease mapping and nucleotide sequence analysis. Two out of the three DNA sequences differed from those of published DR-chain sequences. A DR-gene probe prepared from exon 4 and flanking sequences was used in a Southern blot analysis of blood donors' DNA and DNA from HLA-DR3/4 IDDM patients and HLA-DR-matched healthy control subjects. This probe differentiated HLA-DR3/4 IDDM patients and HLA-DR-matched controls in the Scandinavian population but not in the North American Caucasoid population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号