首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We report that in Escherichia coli, chemotaxis to sugars transported by the phosphotransferase system is mediated by adenylate cyclase, the nucleotide cyclase linked to the phosphotransferase system. We conclude that adenylate cyclase is required in this chemotaxis pathway because mutations in the cyclase gene (cya) eliminate or impair the response to phosphotransferase system sugars, even though other components of the phosphotransferase system known to be required for the detection of these sugars are relatively unaffected by such mutations. Moreover, merely supplying the mutant bacteria with the products of this enzyme, cyclic AMP and cyclic GMP, does not restore the chemotactic response. Because a residual chemotactic response is observed in certain strains with residual cyclic GMP synthesis but no cyclic AMP synthesis, it appears that the guanylate cyclase activity rather than the adenylate cyclase activity of the enzyme may be required for chemotaxis to sugars transported by the phosphotransferase system. Mutations in the cyclic nucleotide phosphodiesterase gene, which increase the level of both cyclic AMP and cyclic GMP, also reduce chemotaxis to these sugars. Therefore, it appears that control of the level of a cyclic nucleotide is critical for the chemotactic response to phosphotransferase system sugars.  相似文献   

3.
4.
5.
We have characterized a new locus, BRA3, leading to deregulation of the yeast purine synthesis genes (ADE genes). We show that bra3 mutations are alleles of the GUK1 gene, which encodes GMP kinase. The bra3 mutants have a low GMP kinase activity, excrete purines in the medium, and show vegetative growth defects and resistance to purine base analogs. The bra3 locus also corresponds to the previously described pur5 locus. Several lines of evidence indicate that the decrease in GMP kinase activity in the bra3 mutants results in GMP accumulation and feedback inhibition of hypoxanthine-guanine phosphoribosyltransferase (HGPRT), encoded by the HPT1 gene. First, guk1 and hpt1 mutants share several phenotypes, such as adenine derepression, purine excretion, and 8-azaguanine resistance. Second, overexpression of HPT1 allows suppression of the deregulated phenotype of the guk1 mutants. Third, we show that purified yeast HGPRT is inhibited by GMP in vitro. Finally, incorporation of hypoxanthine into nucleotides is similarly diminished in hpt1 and guk1 mutants in vivo. We conclude that the decrease in GMP kinase activity in the guk1 mutants results in deregulation of the ADE gene expression by phenocopying a defect in HGPRT. The possible occurrence of a similar phenomenon in humans is discussed.  相似文献   

6.
Abstract: In rat pinealocytes, protein kinase C (PKC) is involved in the α1-adrenergic-mediated potentiation of β-adrenergic-stimulated cyclic nucleotide responses; however, the specific PKC isozyme(s) involved in the potentiation mechanism remain unknown. In the present study, we compared the effects of two PKC inhibitors, calphostin C, a specific inhibitor of PKC, and Gö6976, a selective inhibitor of PKCα and PKCβ1, on the adrenergic-stimulated cyclic nucleotide accumulation in rat pinealocytes. Surprisingly, Gö6976 was found to have an enhancing effect on basal cyclic GMP and isoproterenol-stimulated cyclic AMP and cyclic GMP accumulation, an effect not shared by calphostin C. Gö6976 also increased the norepinephrine- and ionomycin-induced potentiation of isoproterenol-stimulated cyclic AMP and cyclic GMP accumulation, whereas the effect of calphostin C was inhibitory. The enhancing effect of Gö6976 was abolished in the presence of isobutylmethylxanthine or zaprinast, but not rolipram, suggesting that this effect of Gö6976 may be mediated through type V or the retinal type of phosphodiesterase. Based on these observations, we propose that some of the PKC isozyme(s) inhibited by calphostin C are involved in the potentiation of β-adrenergic-stimulated cyclic nucleotide responses and that they act by enhancing synthesis. However, PKC isozymes inhibited by Gö6976 appear to be basally active and tonically inhibit cyclic nucleotide accumulation through their stimulatory action on phosphodiesterase.  相似文献   

7.
8.
In Saccharomyces cerevisiae a Golgi lumenal GDPase (ScGda1p) generates GMP, the antiporter required for entry of GDP-mannose, from the cytosol, into the Golgi lumen. Scgda1 deletion strains have severe defects in N- and O-mannosylation of proteins and glycosphingolipids. ScGda1p has also significant UDPase activity even though S. cerevisiae does not utilize uridine nucleotide sugars in its Golgi lumen. Kluyveromyces lactis, a species closely related to S. cerevisiae, transports UDP-N-acetylglucosamine into its Golgi lumen, where it is the sugar donor for terminal N-acetylglucosamine of the mannan chains. We have identified and cloned a K. lactis orthologue of ScGda1p. KlGda1p is 65% identical to ScGda1p and shares four apyrase conserved regions with other nucleoside diphosphatases. KlGda1p has UDPase activity as ScGda1p. Transport of both GDP-mannose, and UDP-GlcNAc was decreased into Golgi vesicles from Klgda1 null mutants, demonstrating that KlGda1p generates both GMP and UMP required as antiporters for guanosine and uridine nucleotide sugar transport into the Golgi lumen. Membranes from Klgda1 null mutants showed inhibition of glycosyltransferases utilizing uridine- and guanosine-nucleotide sugars, presumably due to accumulation of nucleoside diphosphates because the inhibition could be relieved by addition of apyrase to the incubations. KlGDA1 and ScGDA1 restore the wild-type phenotype of the other yeast gda1 deletion mutant. Surprisingly, KlGDA1 has only a role in O-glycosylation in K. lactis but also complements N-glycosylation defects in S. cerevisiae. Deletion mutants of both genes have altered cell wall stability and composition, demonstrating a broader role for the above enzymes.  相似文献   

9.
Phadnis N  Mehta R  Meednu N  Sia EA 《DNA Repair》2006,5(7):829-839
Mitochondrial DNA is predicted to be highly prone to oxidative damage due to its proximity to free radicals generated by oxidative phosphorylation. Base excision repair (BER) is the primary repair pathway responsible for repairing oxidative damage in nuclear and mitochondrial genomes. In yeast mitochondria, three N-glycosylases have been identified so far, Ntg1p, Ogg1p and Ung1p. Ntg1p, a broad specificity N-glycosylase, takes part in catalyzing the first step of BER that involves the removal of the damaged base. In this study, we examined the role of Ntg1p in maintaining yeast mitochondrial genome integrity. Using genetic reporters and assays to assess mitochondrial mutations, we found that loss of Ntg1p suppresses mitochondrial point mutation rates, frameshifts and recombination rates. We also observed a suppression of respiration loss in the ntg1-Delta cells in response to ultraviolet light exposure implying an overlap between BER and UV-induced damage in the yeast mitochondrial compartment. Over-expression of the BER AP endonuclease, Apn1p, did not significantly affect the mitochondrial mutation rate in the presence of Ntg1p, whereas Apn1p over-expression in an ntg1-Delta background increased the frequency of mitochondrial mutations. In addition, loss of Apn1p also suppressed mitochondrial point mutations. Our work suggests that both Ntg1p and Apn1p generate mutagenic intermediates in the yeast mitochondrial genome.  相似文献   

10.
The reaction of [Pt(dien)Cl1Cl (dien = NH2CH2CH2NHCH2CH2NH2) with nucleotides has been studied by nuclear magnetic resonance. It has been found that the CMP (cytidine 5'-monophosp-ate) and GMP (guanosine 5'-monophosphate/coordinate to the platinum atom through N3 and N7, respectively. The reaction of the platinum salt with the nucleotide is complete when one to one ratio of platinum to nucleotide is used and no evidence of phosphate group binding to platinum has been found. No additional binding sites have been detected except the N7 site on the guanylic group of GMP even in the presence of a large excess of [Pt(dien) Cl1Cl. The AMP (adenosine 5'monophosphate] coordinates to the platinum at the N1 and/or N7 sites. The reaction of AMP and platinum is complete is complete at a ratio of four platinum to one AMP.  相似文献   

11.
Recent genetic work characterized homozygous mutations in the SIL1 gene as cause for the neurodegeneration that is associated with Marinesco-Sj?gren syndrome in man and the woozy mouse mutant. All reported mutations were expected to result in loss of Sil1 function. Sil1 has previously been shown to act as nucleotide exchange factor for the molecular chaperone immunoglobulin heavy chain binding protein (BiP) in the lumen of the endoplasmic reticulum (ER). In the yeast ER Lhs1p was shown to be able to substitute for Sil1p and to represent an alternative nucleotide exchange activity. Therefore, by analogy the mammalian ortholog of Lhs1p, Grp170, was suggested to be able to compensate for the loss of Sil1 function in many mammalian organs. Here we characterize mammalian Grp170 as alternative nucleotide exchange factor for BiP, thus providing a likely explanation for the non-lethal phenotype of the homozygous human and murine SIL1 mutations.  相似文献   

12.
13.
14.
15.
The cyclin-dependent phosphoprotein kinase Pho85p is involved in the regulation of metabolism and cell cycle in the yeast Saccharomyces cerevisiae. It is known that mutations in the PHO85 gene lead to constitutive synthesis of Pho5p acidic phosphatase, a delay in cell growth on media containing nonfermentable carbon sources, sensitivity to high temperature, and other phenotypic effects. A lack of growth at 37 degrees C and on a medium with alcohol as the carbon source was shown to be associated with the rapid accumulation of nuclear ts and mitochondrial [rho-] mutations occurring in the background of gene PHO85 inactivation. Thus, Pho85p seems to play an important role in the maintenance of yeast genome stability.  相似文献   

16.
Cyclic GMP and cyclic AMP levels in eight different rat tissues were examined after animlas were immersed in liquid nitrogen. In order of decreasing concentration, cerebellu, kidney, lung and cerebral cortex contained the greatest quantities fo cyclic GMP. These tissues also contained relatively high concentrations of cyclic AMP. Compared to values in animals which were sacrificed in liquid nitrogen, levels of both nucleotides in many of the tissues examined were altered by decapitation or anesthesia with ether and pentobarbital. Decapitation increased the levels of both cyclic GMP and cyclic AMP in cerebellum, lung, heart, liver and skeletabl muscle. However, decapitation increased only cyclic AMP in cerebral cortex and kidney. Our previously reported high level of cyclic GMP in lung was attributed to ether anesthesia and surgical removal which increased the cyclic GMP content in lung, heart, testis and skeletal muscle. The effect of ether on cyclic GMP levels in lung and heart was blocked by pretreatment of animals with atropine which indicated that cholinergic agents increase cyclic GMP content in these tissues. Acetylcholine and carbachol in the presence of theophylline increased the accumulation of cyclic GMP in incubations of rat lung minces. Increases in cyclic GMP and cyclic AMP levels in cerebellum with ether anesthesia were prevented if rats were immersed in liquid nitrogen after anesthesis with ether. Anesthesia with pentobarbital decreased the levels of cyclic GMP in cerebellum and kidney and increased the nucleotide in heart, liver, testis and skeletal muscle compared to levels in tissues from animals immersed in liquid nitrogen. However, pentobarbital increased cyclic AMP levels in cerebellum and cerebral cortex and decreased the nucleotide in liver, kidney, testis and skeletal muscle. These studies provide a possible explanation for the variability in in vivo levels of cyclic GMP and cyclic AMP which have been previously reported. In addition, these studies support the hypothesis that the synthesis and degradation of cyclic AMP and cyclic GMP are regulated independently and not necessarily in a parallel or reciprocal manner. These studies also suggest that the increase accumulation of one cyclic nucleotide has no major effect on the synthesis and/or metabolism of the other; however, such interactions cannot be entirely excluded from the results of this study.  相似文献   

17.
Catalytic and regulatory properties of the major form of cyclic GMP phosphodiesterase (3':5'-cyclic-GMP 5'-nucleotidohydrolase, EC 3.1.4.35) from rat lung were studied. The enzyme partially purified by a DEAE-Sepharose chromatography displayed a much higher affinity toward cyclic GMP than toward cyclic AMP, the apparent Km values being 5.7 microM and 482 microM for the guanylic and the adenylic cyclic nucleotide, respectively. In contrast, the V value for cyclic AMP was about 3-times higher than the V value for cyclic GMP. Linear double reciprocal plots of initial velocity were observed with each cyclic nucleotide. From 10(-8) to 3.3 X 10(-6) M, cyclic GMP did not change the hydrolysis of 1 or 10 microM cyclic [3H]AMP, while it became inhibitory at higher concentrations. In contrast with a calmodulin-sensitive phosphodiesterase prepared from rat brain, the lung enzyme was not stimulated by a heat-stable Ca2+-dependent factor from rat lung or by rat brain calmodulin or by lipids including fatty acids and lysophosphatidylcholine. Various unsaturated 18- and 20-carbon fatty acids inhibited at varying degrees the cyclic GMP phosphodiesterase from rat lung. The inhibitory potency increased with the number of double bonds in the hydrocarbon chain. In contrast, the methyl esters of the unsaturated fatty acids and the saturated fatty acids of variable hydrocarbon chain lengths had no appreciable effects. A linear Hill plot of phosphodiesterase inhibition with a slope of unity was obtained with arachidonic acid up to 30 microM, suggesting only one type of inhibitory site. In this range of concentrations the inhibition was entirely reversible. Kinetics analysis demonstrated that up to 30 microM arachidonic acid was a purely competitive inhibitor with an apparent Ki of 20 microM. Over 30 microM, the Hill coefficient increased progressively, indicating the binding to other inhibitory sites, while the reversibility disappeared.  相似文献   

18.
Trehalose is a major storage carbohydrate in budding yeast, Saccharomyces cerevisiae. Alterations in trehalose synthesis affect carbon source-dependent growth, accumulation of glycogen and sporulation. Trehalose is synthesized by trehalose phosphate synthase (TPS), which is a complex of at least four proteins. In this work, we show that the Tps1p subunit protein catalyses trehalose phosphate synthesis in the absence of other TPS components. The tps1-H223Y allele (glc6-1) that causes a semidominant decrease in glycogen accumulation exhibits greater enzyme activity than wild-type TPS1 because, unlike the wild-type enzyme, TPS activity in tps1-H223Y cells is not inhibited by phosphate. Poor sporulation in tps1 null diploids is caused by reduced expression of meiotic inducers encoded by IME1, IME2 and MCK1. Furthermore, high-copy MCK1 or heterozygous hxk2 mutations can suppress the tps1 sporulation trait. These results suggest that the trehalose-6-phosphate inhibition of hexokinase activity is required for full induction of MCK1 in sporulating yeast cells.  相似文献   

19.
The phosphodiesterase inhibitors RO-201724/1 and 1-methyl-3-isobutylxanthine (MIX) stimulate a rapid increase in cyclic GMP content in rat pancreas; the latter agent also potentiates the stimulatory effect of carbachol on cyclic GMP synthesis. However, neither RO-201724/1 nor MIX alter basal secretion of 3H-labeled protein, nor do they affect the secretory response to carbachol used in either suboptimal or optimal concentrations. MIX as well does not alter the rate at which carbachol stimulates pancreatic enzyme release. The ability of carbachol to increase cyclic GMP synthesis is lost if extracellular calcium concentration is lowered to 0.05 mM; at this calcium concentration, however, the muscarinic agent still elicits a marked secretory effect. The dissociation between cyclic GMP synthesis and the secretory response suggests that the cyclic nucleotide does not play a major role in the stimulus--enzyme secretion coupling phenomenon of the exocrine pancreas.  相似文献   

20.
The RCC1 gene of mammals encodes a guanine nucleotide release protein (GNRP). RCC1 and a homolog in Saccharomyces cerevisiae (MTR1/PRP20/SRM1) have previously been implicated in control of mRNA metabolism and export from the nucleus. We here demonstrate that a temperature-sensitive fission yeast mutant which has a mutation in a homologous gene, and two of three additional (mtr1/prp20/srm1) mutants accumulate nuclear poly(A)+ RNA at 37 degrees C. In S.cerevisiae, maturation of rRNA and tRNA is also inhibited at 37 degrees C. Nevertheless, studies with the corresponding BHK-21 cell mutant indicate that protein import into the nucleus continues. MTR1 homologs regulate RNA processing at a point which is distinct from their regulation of chromosome condensation since: (i) poly(A)+ RNA accumulation in the fission yeast mutant precedes chromosome condensation, and (ii) unlike chromosome condensation, accumulation of nuclear poly(A)+ RNA does not require p34cdc28 kinase activation or protein synthesis. Moreover, experiments involving inhibition of DNA synthesis indicate that the S.cerevisiae homolog does not govern cell cycle checkpoint control. Since RCC1p acts as GNRP for Ran, a small nuclear GTPase of the ras superfamily, we have identified two homologs of Ran in S.cerevisiae (CNR1 and CNR2). Only CNR1 is essential, but both code for proteins extremely similar to Ran and can suppress mtr1 mutations in allele-specific fashion. Thus, MTR1 and its homologs appear to act as GNRPs for a family of conserved GTPases in controlling RNA metabolism and transport. Their role in governing checkpoint control appears to be restricted to higher eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号