首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have performed random mutagenesis coupled with selection to isolate mutant enzymes with high catalytic activities at low temperature from thermophilic 3-isopropylmalate dehydrogenase (IPMDH) originally isolated from Thermus thermophilus. Five cold-adapted mutant IPMDHs with single-amino-acid substitutions were obtained and analyzed. Kinetic analysis revealed that there are two types of cold-adapted mutant IPMDH: k(cat)-improved (improved in k(cat)) and K(m)-improved (improved in k(cat)/K(m)) types. To determine the mechanisms of cold adaptation of these mutants, thermodynamic parameters were estimated and compared with those of the Escherichia coli wild-type IPMDH. The Delta G(m) values for Michaelis intermediate formation of the k(cat)-improved-type enzymes were larger than that of the T. thermophilus wild-type IPMDH and similar to that of the E. coli wild-type IPMDH. The Delta G(m) values of K(m)-improved-type enzymes were smaller than that of the T. thermophilus wild-type IPMDH. Fitting of NAD(+) binding was improved in the K(m)-improved-type enzymes. The two types of cold-adapted mutants employed one of the two strategies of E. coli wild-type IPMDH: relative destabilization of the Michaelis complex in k(cat)-improved-type, and destabilization of the rate-limiting step in K(m)-improved type mutants. Some cold-adapted mutant IPMDHs retained thermostability similar to that of the T. thermophilus wild-type IPMDH.  相似文献   

2.
Random PCR mutagenesis was applied to the Thermus thermophilus xylA gene encoding xylose isomerase. Three cold-adapted mutants were isolated with the following amino-acid substitutions: E372G, V379A (M-1021), E372G, F163L (M-1024) and E372G (M-1026). The wild-type and mutated xylA genes were cloned and expressed in Escherichia coli HB101 using the vector pGEM-T Easy, and their physicochemical and catalytic properties were determined. The optimum pH for xylose isomerization activity for the mutants was approximately 7.0, which is similar to the wild-type enzyme. Compared with the wild-type, the mutants were active over a broader pH range. The mutants exhibited up to nine times higher catalytic rate constants (k(cat)) for d-xylose compared with the wild-type enzyme at 60 degrees C, but they did not show any increase in catalytic efficiency (k(cat)/K(m)). For d-glucose, both the k(cat) and the k(cat)/K(m) values for the mutants were increased compared with the wild-type enzyme. Furthermore, the mutant enzymes exhibited up to 255 times higher inhibition constants (K(i)) for xylitol than the wild-type, indicating that they are less inhibited by xylitol. The thermal stability of the mutated enzymes was poorer than that of the wild-type enzyme. The results are discussed in terms of increased molecular flexibility of the mutant enzymes at low temperatures.  相似文献   

3.
A newly selected cold-adapted mutant 3-isopropylmalate dehydrogenase (IPMDH) from a random mutant library was a double mutant containing the mutations I11V and S92F that were found in cold-adapted mutant IPMDHs previously isolated. To elucidate the effect of each mutation on enzymatic activity, I11V and six multiple mutant IPMDHs were constructed and analyzed. All of the multiple mutant IPMDHs were found to be improved in catalytic activity at moderate temperatures by increasing the k(cat) with a simultaneous increase of K(m) for the coenzyme NAD(+). k(cat) was improved by a decrease in the activation enthalpy, DeltaH( not equal). The multiple mutants did not show large reduction in thermal stability, and one of them showed enhanced thermal stability. Mutation from I11 to V was revealed to have a stabilizing effect. Mutants showed increased thermal stability when the mutation I11V was combined. This indicates that it is possible to construct mutants with enhanced thermal stability by combining stabilizing mutation. No additivity was observed for the thermodynamic properties of catalytic reaction in the multiple mutant IPMDHs, implying that the structural changes induced by the mutations were interacting with each other. This indicates that careful and detailed tuning is required for enhancing activity in contrast to thermal stability.  相似文献   

4.
A unique variant of glutathione independent formaldehyde dehydrogenase of Pseudomonas putida was obtained by random mutagenesis using the PCR-reaction. This YM042 mutant, S318G, was a cold-adapted formaldehyde dehyrogenase. The activity at 29 degrees C of the variant was 1.7-fold higher than that of the wild type. The K(m) values of the mutant at 37 degrees C were 0.40 mM for NAD(+) and 2.5 mM for formaldehyde, while those of the wild-type were 0.18 mM for NAD(+) and 2.1 mM for formaldehyde. The catalytic efficiency for formaldehyde was about 1.5-fold greater in the mutant than in the wild-type enzyme. The optimum pHs and temperatures of the mutant and the wild-type enzyme were 7.5, and 8.0 and 37 degrees C, and 47 degrees C, respectively. The thermal stability of the mutant was lower than that of the wild type.  相似文献   

5.
Hirano N  Haruki M  Morikawa M  Kanaya S 《Biochemistry》2000,39(43):13285-13294
A genetic method for isolating a mutant enzyme of ribonuclease HI (RNase HI) from Thermus thermophilus HB8 with enhanced activity at moderate temperatures was developed. T. thermophilus RNase HI has an ability to complement the RNase H-dependent temperature-sensitive (ts) growth phenotype of Escherichia coli MIC3001. However, this complementation ability was greatly reduced by replacing Asp(134), which is one of the active site residues, with His, probably due to a reduction in the catalytic activity. Random mutagenesis of the gene encoding the resultant D134H enzyme, followed by screening for second-site revertants, allowed us to isolate three single mutations (Ala(12) --> Ser, Lys(75) --> Met, and Ala(77) --> Pro) that restore the normal complementation ability to the D134H enzyme. These mutations were individually or simultaneously introduced into the wild-type enzyme, and the kinetic parameters of the resultant mutant enzymes for the hydrolysis of a DNA-RNA-DNA/DNA substrate were determined at 30 degrees C. Each mutation increased the k(cat)/K(m) value of the wild-type enzyme by 2.1-4.8-fold. The effects of the mutations on the enzymatic activity were roughly cumulative, and the combination of these three mutations increased the k(cat)/K(m) value of the wild-type enzyme by 40-fold (5.5-fold in k(cat)). Measurement of thermal stability of the mutant enzymes with circular dichroism spectroscopy in the presence of 1 M guanidine hydrochloride and 1 mM dithiothreitol showed that the T(m) value of the triple mutant enzyme, in which all three mutations were combined, was comparable to that of the wild-type enzyme (75.0 vs 77.4 degrees C). These results demonstrate that the activity of a thermophilic enzyme can be improved without a cost of protein stability.  相似文献   

6.
The enzyme ornithine carbamoyltransferase (OTCase) of Moritella abyssi (OTCase(Mab)), a new, strictly psychrophilic and piezophilic bacterial species, was purified. OTCase(Mab) displays maximal activity at rather low temperatures (23 to 25 degrees C) compared to other cold-active enzymes and is much less thermoresistant than its homologues from Escherichia coli or thermophilic procaryotes. In vitro the enzyme is in equilibrium between a trimeric state and a dodecameric, more stable state. The melting point and denaturation enthalpy changes for the two forms are considerably lower than the corresponding values for the dodecameric Pyrococcus furiosus OTCase and for a thermolabile trimeric mutant thereof. OTCase(Mab) displays higher K(m) values for ornithine and carbamoyl phosphate than mesophilic and thermophilic OTCases and is only weakly inhibited by the bisubstrate analogue delta-N-phosphonoacetyl-L-ornithine (PALO). OTCase(Mab) differs from other, nonpsychrophilic OTCases by substitutions in the most conserved motifs, which probably contribute to the comparatively high K(m) values and the lower sensitivity to PALO. The K(m) for ornithine, however, is substantially lower at low temperatures. A survey of the catalytic efficiencies (k(cat)/K(m)) of OTCases adapted to different temperatures showed that OTCase(Mab) activity remains suboptimal at low temperature despite the 4.5-fold decrease in the K(m) value for ornithine observed when the temperature is brought from 20 to 5 degrees C. OTCase(Mab) adaptation to cold indicates a trade-off between affinity and catalytic velocity, suggesting that optimization of key metabolic enzymes at low temperatures may be constrained by natural limits.  相似文献   

7.
The genes encoding NAD(+)-dependent alanine dehydrogenases (AlaDHs) (EC 1.4.1.1) from the Antarctic bacterial organisms Shewanella sp. strain Ac10 (SheAlaDH) and Carnobacterium sp. strain St2 (CarAlaDH) were cloned and expressed in Escherichia coli. Of all of the AlaDHs that have been sequenced, SheAlaDH exhibited the highest level of sequence similarity to the AlaDH from the gram-negative bacterium Vibrio proteolyticus (VprAlaDH). CarAlaDH was most similar to AlaDHs from mesophilic and thermophilic Bacillus strains. SheAlaDH and CarAlaDH had features typical of cold-adapted enzymes; both the optimal temperature for catalytic activity and the temperature limit for retaining thermostability were lower than the values obtained for the mesophilic counterparts. The k(cat)/K(m) value for the SheAlaDH reaction was about three times higher than the k(cat)/K(m) value for VprAlaDH, but it was much lower than the k(cat)/K(m) value for the AlaDH from Bacillus subtilis. Homology-based structural models of various AlaDHs, including the two psychotropic AlaDHs, were constructed. The thermal instability of SheAlaDH and CarAlaDH may result from relatively low numbers of salt bridges in these proteins.  相似文献   

8.
Two notable features of the thermophilic CYP119, an Arg154-Glu212 salt bridge between the F-G loop and the I helix and an extended aromatic cluster, were studied to determine their contributions to the thermal stability of the enzyme. Site-specific mutants of the salt bridge (Arg154, Glu212) and aromatic cluster (Tyr2, Trp4, Trp231, Tyr250, Trp281) were expressed and purified. The substrate-binding and kinetic constants for lauric acid hydroxylation are little affected in most mutants, but the E212D mutant is inactive and the R154Q mutant has higher K(s),K(m), and k(cat) values. The salt bridge mutants, like wild-type CYP119, melt at 91+/-1 degrees C, whereas mutation of individual residues in the extended aromatic cluster lowers the T(m) by 10-15 degrees C even though no change is observed on mutation of an unrelated aromatic residue. The extended aromatic cluster, but not the Arg154-Glu212 salt bridge, contributes to the thermal stability of CYP119.  相似文献   

9.
Random mutagenesis of Thermus thermophilus 3-isopropylmalate dehydrogenase revealed that a substitution of Val126Met in a hinge region caused a marked increase in specific activity, particularly at low temperatures, although the site is far from the binding residues for 3-isopropylmalate and NAD. To understand the molecular mechanism, residue 126 was substituted with one of eight other residues, Gly, Ala, Ser, Thr, Glu, Leu, Ile or Phe. Circular dichroism analyses revealed a decreased thermal stability of the mutants (Delta T ((1/2))= 0-13 degrees C), indicating structural perturbations caused by steric conflict with surrounding residues having larger side chains. Kinetic parameters, k(cat) and K(m) values for isopropylmalate and NAD, were also affected by the mutation, but the resulting k(cat)/K(m) values were similar to that of the wild-type enzyme, suggesting that the change in the catalytic property is caused by the change in free-energy level of the Michaelis complex state relative to that of the initial state. The kinetic parameters and activation enthalpy change (Delta H (double dagger)) showed good correlation with the van der Waals volume of residue 126. These results suggested that the artificial cold adaptation (enhancement of k(cat) value at low temperatures) resulted from the destabilization of the ternary complex caused by the increase in the volume of the residue at position 126.  相似文献   

10.
Pichia stipitis NAD(+)-dependent xylitol dehydrogenase (XDH), a medium-chain dehydrogenase/reductase, is one of the key enzymes in ethanol fermentation from xylose. For the construction of an efficient biomass-ethanol conversion system, we focused on the two areas of XDH, 1) change of coenzyme specificity from NAD(+) to NADP(+) and 2) thermostabilization by introducing an additional zinc atom. Site-directed mutagenesis was used to examine the roles of Asp(207), Ile(208), Phe(209), and Asn(211) in the discrimination between NAD(+) and NADP(+). Single mutants (D207A, I208R, F209S, and N211R) improved 5 approximately 48-fold in catalytic efficiency (k(cat)/K(m)) with NADP(+) compared with the wild type but retained substantial activity with NAD(+). The double mutants (D207A/I208R and D207A/F209S) improved by 3 orders of magnitude in k(cat)/K(m) with NADP(+), but they still preferred NAD(+) to NADP(+). The triple mutant (D207A/I208R/F209S) and quadruple mutant (D207A/I208R/F209S/N211R) showed more than 4500-fold higher values in k(cat)/K(m) with NADP(+) than the wild-type enzyme, reaching values comparable with k(cat)/K(m) with NAD(+) of the wild-type enzyme. Because most NADP(+)-dependent XDH mutants constructed in this study decreased the thermostability compared with the wild-type enzyme, we attempted to improve the thermostability of XDH mutants by the introduction of an additional zinc atom. The introduction of three cysteine residues in wild-type XDH gave an additional zinc-binding site and improved the thermostability. The introduction of this mutation in D207A/I208R/F209S and D207A/I208R/F209S/N211R mutants increased the thermostability and further increased the catalytic activity with NADP(+).  相似文献   

11.
Secundo F  Russo C  Giordano A  Carrea G  Rossi M  Raia CA 《Biochemistry》2005,44(33):11040-11048
A combination of hydrogen/deuterium exchange, fluorescence quenching, and kinetic studies was used to acquire experimental evidence for the crystallographically hypothesized increase in local flexibility which occurs in thermophilic NAD(+)-dependent Sulfolobus solfataricus alcohol dehydrogenase (SsADH) upon substitution Asn249Tyr. The substitution, located at the adenine-binding site, proved to decrease the affinity for both coenzyme and substrate, rendering the mutant enzyme 6-fold more active when compared to the wild-type enzyme [Esposito et al. (2003) FEBS Lett. 539, 14-18]. The amide H/D exchange data show that the wild-type and mutant enzymes have similar global flexibility at 22 and 60 degrees C. However, the temperature dependence of the Stern-Volmer constant determined by acrylamide quenching shows that the increase in temperature affects the local flexibility differently, since the K(SV) increment is significantly higher for the wild-type than for the mutant enzyme over the range 18-45 degrees C. Interestingly, the corresponding van't Hoff plot (log K(SV) vs 1/T) proves nonlinear for the apo and holo wild-type and apo mutant enzymes, with a break at approximately 45 degrees C in all three cases due to a conformational change affecting the tryptophan microenvironment experienced by the quencher molecules. The Arrhenius and van't Hoff plots derived from the k(cat) and K(M) thermodependence measured with cyclohexanol and NAD(+) at different temperatures display an abrupt change of slope at 45-50 degrees C. This proves more pronounced in the case of the mutant enzyme compared to the wild-type enzyme due to a conformational change in the structure rather than to an overlapping of two or more rate-limiting reaction steps with different temperature dependencies of their rate constants. Three-dimensional analysis indicates that the observed conformational change induced by temperature is associated with the flexible loops directly involved in the substrate and coenzyme binding.  相似文献   

12.
L-Arabinose isomerase (AI) catalyzes the isomerization of L-arabinose to L-ribulose. It can also convert d-galactose to d-tagatose at elevated temperatures in the presence of divalent metal ions. The araA genes, encoding AI, from the mesophilic bacterium Bacillus halodurans and the thermophilic Geobacillus stearothermophilus were cloned and overexpressed in Escherichia coli, and the recombinant enzymes were purified to homogeneity. The purified enzymes are homotetramers with a molecular mass of 232 kDa and close amino acid sequence identity (67%). However, they exhibit quite different temperature dependence and metal requirements. B. halodurans AI has maximal activity at 50 degrees C under the assay conditions used and is not dependent on divalent metal ions. Its apparent K(m) values are 36 mM for L-arabinose and 167 mM for d-galactose, and the catalytic efficiencies (k(cat)/K(m)) of the enzyme were 51.4 mM(-1)min(-1) (L-arabinose) and 0.4 mM(-1)min(-1) (d-galactose). Unlike B. halodurans AI, G. stearothermophilus AI has maximal activity at 65-70 degrees C, and is strongly activated by Mn(2+). It also has a much higher catalytic efficiency of 4.3 mM(-1)min(-1) for d-galactose and 32.5 mM(-1)min(-1)for L-arabinose, with apparent K(m) values of 117 and 63 mM, respectively. Irreversible thermal denaturation experiments using circular dichroism (CD) spectroscopy showed that the apparent melting temperature of B. halodurans AI (T(m)=65-67 degrees C) was unaffected by the presence of metal ions, whereas EDTA-treated G. stearothermophilus AI had a lower T(m) (72 degrees C) than the holoenzyme (78 degrees C). CD studies of both enzymes demonstrated that metal-mediated significant conformational changes were found in holo G. stearothermophilus AI, and there is an active tertiary structure for G. stearothermophilus AI at elevated temperatures for its catalytic activity. This is in marked contrast to the mesophilic B. halodurans AI where cofactor coordination is not necessary for proper protein folding. The metal dependence of G. stearothermophilus AI seems to be correlated with their catalytic and structural functions. We therefore propose that the metal ion requirement of the thermophilic G. stearothermophilus AI reflects the need to adopt the correct substrate-binding conformation and the structural stability at elevated temperatures.  相似文献   

13.
Directed evolution study of temperature adaptation in a psychrophilic enzyme   总被引:10,自引:0,他引:10  
We have used laboratory evolution methods to enhance the thermostability and activity of the psychrophilic protease subtilisin S41, with the goal of investigating the mechanisms by which this enzyme can adapt to different selection pressures. A combined strategy of random mutagenesis, saturation mutagenesis and in vitro recombination (DNA shuffling) was used to generate mutant libraries, which were screened to identify enzymes that acquired greater thermostability without sacrificing low-temperature activity. The half-life of seven-amino acid substitution variant 3-2G7 at 60 degrees C is approximately 500 times that of wild-type and far surpasses those of homologous mesophilic subtilisins. The dependence of half-life on calcium concentration indicates that enhanced calcium binding is largely responsible for the increased stability. The temperature optimum of the activity of 3-2G7 is shifted upward by approximately 10 degrees C. Unlike natural thermophilic enzymes, however, the activity of 3-2G7 at low temperatures was not compromised. The catalytic efficiency, k(cat)/K(M), was enhanced approximately threefold over a wide temperature range (10 to 60 degrees C). The activation energy for catalysis, determined by the temperature dependence of k(cat)/K(M) in the range 15 to 35 degrees C, is nearly identical to wild-type and close to half that of its highly similar mesophilic homolog, subtilisin SSII, indicating that the evolved S41 enzyme retained its psychrophilic character in spite of its dramatically increased thermostability. These results demonstrate that it is possible to increase activity at low temperatures and stability at high temperatures simultaneously. The fact that enzymes displaying both properties are not found in nature most likely reflects the effects of evolution, rather than any intrinsic physical-chemical limitations on proteins.  相似文献   

14.
Isocitrate lyase (ICL) from Colwellia psychrerythraea, a psychrophilic bacterium, was purified and characterized. The subunit molecular mass was 64 kDa, which is larger than that of other bacterial ICLs. The optimal temperature for its activity was 25 degrees C, the value of K(m) for the substrate ( DL-isocitrate) was minimum at 15 degrees C, and the catalytic efficiency ( k(cat)/ K(m)) value was maximum at 20 degrees C. Furthermore, the enzyme was remarkably thermolabile and completely inactivated by incubation for 2 min at 30 degrees C. These features indicate that ICL from this bacterium is a typical cold-adapted enzyme. A partial amino acid sequence of the C. psychrerythraea ICL was very similar to that of the closely related psychrophile Colwellia maris. Expression of the gene encoding the C. psychrerythraea ICL was found to be induced by low temperatures and by acetate in the medium. The cold adaptation of the catalytic properties of ICL and the stimulated expression of its gene at low temperatures strongly suggest that this enzyme is important for the growth of this bacterium in a cold environment.  相似文献   

15.
We engineered an acetyl xylan esterase (AwaxeA) gene from Aspergillus awamori into a heterologous expression system in Pichia pastoris. Purified recombinant AwAXEA (rAwAXEA) displayed the greatest hydrolytic activity toward alpha-naphthylacetate (C2), lower activity toward alpha-naphthylpropionate (C3) and no detectable activity toward acyl-chain substrates containing four or more carbon atoms. Putative catalytic residues, Ser(119), Ser(146), Asp(168) and Asp(202), were substituted for alanine by site-directed mutagenesis. The biochemical properties and kinetic parameters of the four mutant enzymes were examined. The S119A and D202A mutant enzymes were catalytically inactive, whereas S146A and D168A mutants displayed significant hydrolytic activity. These observations indicate that Ser(119) and Asp(202) are important for catalysis. The S146A mutant enzyme showed lower specific activity toward the C2 substrate and higher thermal stability than wild-type enzyme. The lower activity of S146A was due to a combination of increased K(m) and decreased k(cat). The catalytic efficiency of S146A was 41% lower than that of wild-type enzyme. The synthesis of ethyl acetate was >10-fold than that of ethyl n-hexanoate synthesis for the wild-type, S146A and D168A mutant enzymes. However, the D202A showed greater synthetic activity of ethyl n-hexanoate as compared with the wild-type and other mutants.  相似文献   

16.
The roles of particular amino acids in substrate and coenzyme binding and catalysis of glucose-6-phosphate dehydrogenase of Leuconostoc mesenteroides have been investigated by site-directed mutagenesis, kinetic analysis, and determination of binding constants. The enzyme from this species has functional dual NADP(+)/NAD(+) specificity. Previous investigations in our laboratories determined the three-dimensional structure. Kinetic studies showed an ordered mechanism for the NADP-linked reaction while the NAD-linked reaction is random. His-240 was identified as the catalytic base, and Arg-46 was identified as important for NADP(+) but not NAD(+) binding. Mutations have been selected on the basis of the three-dimensional structure. Kinetic studies of 14 mutant enzymes are reported and kinetic mechanisms are reported for 5 mutant enzymes. Fourteen substrate or coenzyme dissociation constants have been measured for 11 mutant enzymes. Roles of particular residues are inferred from k(cat), K(m), k(cat)/K(m), K(d), and changes in kinetic mechanism. Results for enzymes K182R, K182Q, K343R, and K343Q establish Lys-182 and Lys-343 as important in binding substrate both to free enzyme and during catalysis. Studies of mutant enzymes Y415F and Y179F showed no significant contribution for Tyr-415 to substrate binding and only a small contribution for Tyr-179. Changes in kinetics for T14A, Q47E, and R46A enzymes implicate these residues, to differing extents, in coenzyme binding and discrimination between NADP(+) and NAD(+). By the same measure, Lys-343 is also involved in defining coenzyme specificity. Decrease in k(cat) and k(cat)/K(m) for the D374Q mutant enzyme defines the way Asp-374, unique to L. mesenteroides G6PD, modulates stabilization of the enzyme during catalysis by its interaction with Lys-182. The greatly reduced k(cat) values of enzymes P149V and P149G indicate the importance of the cis conformation of Pro-149 in accessing the correct transition state.  相似文献   

17.
Although enzymes of thermophilic organisms are often very resistant to thermal denaturation, they are usually less active than their mesophilic or psychrophilic homologues at moderate or low temperatures. To explore the structural features that would improve the activity of a thermophilic enzyme at less than optimal temperatures, we randomly mutated the DNA of single-site mutants of the thermostable Thermus thermophilus 3-isopropylmalate dehydrogenase that already had improved low-temperature activity and selected for additional improved low-temperature activity. A mutant (Ile279 → Val) with improved low-temperature activity contained a residue that directly interacts with the adenine of the coenzyme NAD(+), suggesting that modulation of the coenzyme-binding pocket's volume can enhance low-temperature activity. This idea was further supported by a saturation mutagenesis study of the two codons of two other residues that interact with the adenine. Furthermore, a similar type of amino acid substitution also improved the catalytic efficiency of another thermophilic dehydrogenase, T. thermophilus lactate dehydrogenase. Steady-state kinetic experiments showed that the mutations all favorably affected the catalytic turnover numbers. Thermal stability measurements demonstrated that the mutants remain very resistant to heat. Calculation of the energetic contributions to catalysis indicated that the increased turnover numbers are the result of destabilized enzyme-substrate-coenzyme complexes. Therefore, small changes in the side chain volumes of coenzyme-binding residues improved the catalytic efficiencies of two thermophilic dehydrogenases while preserving their high thermal stabilities and may be a way to improve low-temperature activities of dehydrogenases in general.  相似文献   

18.
The heat-labile alpha-amylase from an antarctic bacterium is the largest known protein that unfolds reversibly according to a two-state transition as shown by differential scanning calorimetry. Mutants of this enzyme were produced, carrying additional weak interactions found in thermostable alpha-amylases. It is shown that single amino acid side chain substitutions can significantly modify the melting point T(m), the calorimetric enthalpy Delta H(cal), the cooperativity and reversibility of unfolding, the thermal inactivation rate constant, and the kinetic parameters k(cat) and K(m). The correlation between thermal inactivation and unfolding reversibility displayed by the mutants also shows that stabilizing interactions increase the frequency of side reactions during refolding, leading to intramolecular mismatches or aggregations typical of large proteins. Although all mutations were located far from the active site, their overall trend is to decrease both k(cat) and K(m) by rigidifying the molecule and to protect mutants against thermal inactivation. The effects of these mutations indicate that the cold-adapted alpha-amylase has lost a large number of weak interactions during evolution to reach the required conformational plasticity for catalysis at low temperatures, thereby producing an enzyme close to the lowest stability allowing maintenance of the native conformation.  相似文献   

19.
Despite the structural similarities between cholesterol oxidase from Streptomyces and that from Brevibacterium, both enzymes exhibit different characteristics, such as catalytic activity, optimum pH and temperature. In attempts to define the molecular basis of differences in catalytic activity or stability, substitutions at six amino acid residues were introduced into cholesterol oxidase using site-directed mutagenesis of its gene. The amino acid substitutions chosen were based on structural comparisons of cholesterol oxidases from Streptomyces and BREVIBACTERIUM: Seven mutant enzymes were constructed with the following amino acid substitutions: L117P, L119A, L119F, V145Q, Q286R, P357N and S379T. All the mutant enzymes exhibited activity with the exception of that with the L117P mutation. The resulting V145Q mutant enzyme has low activities for all substrates examined and the S379T mutant enzyme showed markedly altered substrate specificity compared with the wild-type enzyme. To evaluate the role of V145 and S379 residues in the reaction, mutants with two additional substitutions in V145 and four in S379 were constructed. The mutant enzymes created by the replacement of V145 by Asp and Glu had much lower catalytic efficiency for cholesterol and pregnenolone as substrates than the wild-type enzyme. From previous studies and this study, the V145 residue seems to be important for the stability and substrate binding of the cholesterol oxidase. In contrast, the catalytic efficiencies (k(cat)/K(m)) of the S379T mutant enzyme for cholesterol and pregnenolone were 1.8- and 6.0-fold higher, respectively, than those of the wild-type enzyme. The enhanced catalytic efficiency of the S379T mutant enzyme for pregnenolone was due to a slightly high k(cat) value and a low K(m) value. These findings will provide several ideas for the design of more powerful enzymes that can be applied to clinical determination of serum cholesterol levels and as sterol probes.  相似文献   

20.
Some structural features underlying the increased thermostability of enzymes from thermophilic organisms relative to their homologues from mesophiles are known from earlier studies. We used cellulase C from Clostridium thermocellum to test whether thermostability can be increased by mutations designed using rules learned from thermophilic proteins. Cellulase C has a TIM barrel fold with an additional helical subdomain. We designed and produced a number of mutants with the aim to increase its thermostability. Five mutants were designed to create new electrostatic interactions. They all retained catalytic activity but exhibited decreased thermostability relative to the wild-type enzyme. Here, the stabilizing contributions are obviously smaller than the destabilization caused by the introduction of the new side chains. In another mutant, the small helical subdomain was deleted. This mutant lost activity but its melting point was only 3 degrees C lower than that of the wild-type enzyme, which suggests that the subdomain is an independent folding unit and is important for catalytic function. A double mutant was designed to introduce a new disulfide bridge into the enzyme. This mutant is active and has an increased stability (deltaT(m)=3 degrees C, delta(deltaG(u))=1.73 kcal/mol) relative to the wild-type enzyme. Reduction of the disulfide bridge results in destabilization and an altered thermal denaturation behavior. We conclude that rules learned from thermophilic proteins cannot be used in a straightforward way to increase the thermostability of a protein. Creating a crosslink such as a disulfide bond is a relatively sure-fire method but the stabilization may be smaller than calculated due to coupled destabilizing effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号