首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Group IIA secretory phospholipase A(2) (sPLA(2)-IIA) is a prototypic sPLA(2) enzyme that may play roles in modification of eicosanoid biosynthesis as well as antibacterial defense. In several cell types, inducible expression of sPLA(2) by pro-inflammatory stimuli is attenuated by group IVA cytosolic PLA(2) (cPLA(2)alpha) inhibitors such as arachidonyl trifluoromethyl ketone, leading to the proposal that prior activation of cPLA(2)alpha is required for de novo induction of sPLA(2). However, because of the broad specificity of several cPLA(2)alpha inhibitors used so far, a more comprehensive approach is needed to evaluate the relevance of this ambiguous pathway. Here, we provide evidence that the induction of sPLA(2)-IIA by pro-inflammatory stimuli requires group VIB calcium-independent PLA(2) (iPLA(2)gamma), rather than cPLA(2)alpha, in rat fibroblastic 3Y1 cells. Results with small interfering RNA unexpectedly showed that the cytokine induction of sPLA(2)-IIA in cPLA(2)alpha knockdown cells, in which cPLA(2)alpha protein was undetectable, was similar to that in replicate control cells. By contrast, knockdown of iPLA(2)gamma, another arachidonyl trifluoromethyl ketone-sensitive intracellular PLA(2), markedly reduced the cytokine-induced expression of sPLA(2)-IIA. Supporting this finding, the R-enantiomer of bromoenol lactone, an iPLA(2)gamma inhibitor, suppressed the cytokine-induced sPLA(2)-IIA expression, whereas (S)-bromoenol lactone, an iPLA(2)beta inhibitor, failed to do so. Moreover, lipopolysaccharide-stimulated sPLA(2)-IIA expression was also abolished by knockdown of iPLA(2)gamma. These findings open new insight into a novel regulatory role of iPLA(2)gamma in stimulus-coupled sPLA(2)-IIA expression.  相似文献   

2.
Stimulation of rat mesangial cells for 24 h with interleukin-1beta (IL- 1beta) plus forskolin (Fk) leads to a marked increase in prostaglandin E2 (PGE2) synthesis. This effect is further enhanced by the small G-protein Rho inhibitor toxin A. A similar increase in PGE2 formation is obtained with Y27632, a Rho-dependent kinase inhibitor, and with lovastatin, a hydroxymethylglutaryl-coenzyme A inhibitor which depletes cells from geranylgeranyl moieties and thus blocks Rho activation. In parallel to the increased PGE2 synthesis, a potentiation of IL-1beta-induced secretory group IIA phospholipases A2 (sPLA2-IIA) protein expression also occurs by Rho inhibition. However, only toxin A triggers an increased sPLA2-IIA activity consistent with the elevated levels of protein expression, whereas Y27632 and lovastatin rather reduced IL-1beta-induced sPLA2-IIA activity. In vitro activity studies reveal that Y27632 and lovastatin can directly block sPLA2-IIA enzyme activity in a concentration-dependent manner. Interestingly, in the absence of IL-1beta/Fk stimulation and the lack of sPLA2-IIA protein expression, all Rho inhibitors exert a small but significant increase in PGE2 formation suggesting that additional PLA2s or downstream enzymes like cyclooxygenases or prostaglandin synthases may be activated by Rho inhibitors. Western blot analyses of toxin A-, Y27632- and lovastatin-stimulated cells reveal that the cytosolic group IV PLA2 (cPLA2) and the cytosolic PGE2 synthase (cPGES), but not the sPLA2-IIA, cyclooxygenase-2 or the microsomal PGE2 synthase (mPGES), are upregulated compared to unstimulated cells. Furthermore, the Rho inhibitors induced arachidonic acid release from intact cells which is blocked by the cPLA2 inhibitor methyl arachidonyl fluorophosphonate (MAFP). In summary, these data show that inhibition of the small G-protein Rho, either by toxin A, lovastatin, or Y27632, exert a dual effect on mesangial cells: (i) in the absence of an inflammatory stimulus it activates the constitutive cPLA2 and cPGE2 synthase and generates low amount of PGE2. (ii) In the presence of inflammatory cytokines it potentiates sPLA2-IIA expression and subsequent PGE2 formation. In addition, we identified lovastatin and Y27632 as direct inhibitors of sPLA2-IIA in a cell-free system.  相似文献   

3.
Human type IIA secretory phospholipase A2 (sPLA2-IIA) is induced in association with several immune-mediated inflammatory conditions. We have evaluated the effect of sPLA2-IIA on PG production in primary synovial fibroblasts from patients with rheumatoid arthritis (RA). At concentrations found in the synovial fluid of RA patients, exogenously added sPLA2-IIA dose-dependently amplified TNF-alpha-stimulated PGE2 production by cultured synovial fibroblasts. Enhancement of TNF-alpha-stimulated PGE2 production in synovial cells was accompanied by increased expression of cyclooxygenase (COX)-2 and cytosolic phospholipase A2 (cPLA2)-alpha. Blockade of COX-2 enzyme activity with the selective inhibitor NS-398 prevented both TNF-alpha-stimulated and sPLA2-IIA-amplified PGE2 production without affecting COX-2 protein induction. However, both sPLA2-IIA-amplified PGE2 production and enhanced COX-2 expression were blocked by the sPLA2 inhibitor LY311727. Colocalization studies using triple-labeling immunofluorescence microscopy showed that sPLA2-IIA and cPLA2-alpha are coexpressed with COX-2 in discrete populations of CD14-positive synovial macrophages and synovial tissue fibroblasts from RA patients. Based on these findings, we propose a model whereby the enhanced expression of sPLA2-IIA by RA synovial cells up-regulates TNF-alpha-mediated PG production via superinduction of COX-2. Therefore, sPLA2-IIA may be a critical modulator of cytokine-mediated synovial inflammation in RA.  相似文献   

4.
Neutrophils and differentiated PLB-985 cells contain various types of PLA(2)s including the 85 kDa cytosolic PLA(2) (cPLA(2)), Ca(2+)-independent PLA(2) (iPLA(2)) and secreted PLA(2)s (sPLA(2)s). The present study focuses on the behavior of sPLA(2)s in neutrophils and PLB cells and their relationship to cPLA(2)alpha. The results of the present research show that the two types of sPLA(2) present in neutrophils, sPLA(2)-V and sPLA(2)-X, which are located in the azurophil granules, are differentially affected by physiological stimuli. While sPLA(2)-V is secreted to the extacellular milieu, sPLA(2)-X is detected on the plasma membranes after stimulation. Stimulation of neutrophils with formyl-Met-Leu-Phe (fMLP), opsonized zymosan (OZ) or A23187 resulted in a different kinetics of sPLA(2) secretion as detected by its activity in the neutrophil supernatants. Neutrophil priming by inflammatory cytokines or LPS enhanced sPLA(2) activity detected in the supernatant after stimulation by fMLP. This increased activity was due to increased secretion of sPLA(2)-V to the supernatant and not to release of sPLA(2)-X. sPLA(2) in granulocyte-like PLB cells exhibit identical characteristics to neutrophil sPLA(2), with similar activity and optimal pH of 7.5. Granulocyte-like cPLA(2)alpha-deficient PLB cells serve as a good model to study whether sPLA(2) activity is regulated by cPLA(2)alpha. Secretion and activity of sPLA(2) were found to be similar in granulocyte-like PLB cells expressing or lacking cPLA(2)alpha, indicating that they are not under cPLA(2)alpha regulation.  相似文献   

5.
Although it has been proposed that arachidonate release by several secretory phospholipase A2 (sPLA2) isozymes is modulated by cytosolic PLA2 (cPLA2), the cellular component(s) that intermediates between these two signaling PLA2s remains unknown. Here we provide evidence that 12- or 15-lipoxygenase (12/15-LOX), which lies downstream of cPLA2, plays a pivotal role in cytokine-induced gene expression and function of sPLA2-IIA. The sPLA2-IIA expression and associated PGE2 generation induced by cytokines in rat fibroblastic 3Y1 cells were markedly attenuated by antioxidants that possess 12/15-LOX inhibitory activity. 3Y1 cells expressed 12/15-LOX endogenously, and forcible overexpression of 12/15-LOX in these cells greatly enhanced cytokine-induced expression of sPLA2-IIA, with a concomitant increase in delayed PG generation. Moreover, studies using 293 cells stably transfected with sPLA2-IIA revealed that stimulus-dependent hydrolysis of membrane phospholipids by sPLA2-IIA was enhanced by overexpression of 12/15-LOX. These results indicate that the product(s) generated by the cPLA2-12/15-LOX pathway following cell activation may play two roles: enhancement of sPLA2-IIA gene expression and membrane sensitization that leads to accelerated sPLA2-IIA-mediated hydrolysis.  相似文献   

6.
7.
The first step in prostacyclin (PGI(2)) synthesis involves the generation of arachidonic acid (AA) from membrane phospholipids mediated by the 85 kDa cytosolic phospholipase A(2) (cPLA(2)alpha). The current study examined the effects of secretory PLA(2)s (sPLA(2)s) on PGI(2) production by human umbilical vein endothelial cells (HUVEC). We demonstrate that exposure of HUVEC to sPLA(2) dose- and time-dependently enhances AA release and PGI(2) generation. sPLA(2)-stimulated AA mobilisation was blocked by AACOCF(3), an inhibitor of cPLA(2)alpha, suggesting cross-talk between the two classes of PLA(2). sPLA(2) induced the phosphorylation of cPLA(2)alpha and enhanced the phosphorylation states of p42/44(mapk), p38(mapk), and JNK, concomitant with elevated AA and PGI(2) release. The MEK inhibitor PD98059 attenuated sPLA(2)-stimulated cPLA(2)alpha phosphorylation and PGI(2) release. These data show that sPLA(2) cooperates with cPLA(2)alpha in a MAPK-dependent manner to regulate PGI(2) generation and suggests that cross-talk between sPLA(2) and cPLA(2)alpha is a physiologically important mechanism for enhancing prostanoid production in endothelial cells.  相似文献   

8.
Acute respiratory distress syndrome (ARDS) is characterized by alterations in microvascular permeability. In ARDS secreted phospholipase A(2) (sPLA(2)) IB and IIA are found to be highly upregulated. In this study, we therefore investigated the influence of exogenously added sPLA(2)-IB and sPLA(2)-IIA on the production of chemokines and adhesion molecules in lung microvascular endothelial cells (LMVEC). Treatment of LMVEC with sPLA(2)s resulted in a significant increase in the production of chemokines and adhesion molecules due to an increased expression of their mRNA and in an enhanced release of oleic acid. The upregulation of chemokines and adhesion molecules by LPS was stronger in the presence of sPLA(2). Activation of NF-kappaB occurred upon stimulation with sPLA(2). Moreover the MAPkinase pERK seems to be involved since a specific pERK inhibitor, e.g., U0126, but not a p38Kinase inhibitor, e.g., SB203580 prevented sPLA(2)-induced chemokine upregulation. Our data therefore suggest that LMVEC are a highly sensitive target for the direct action of extracellular sPLA(2)s.  相似文献   

9.
Human group IIA-secreted phospholipase A(2) (sPLA(2)-IIA) is an important regulator of cytokine-mediated inflammatory responses in both in vitro and in vivo models of rheumatoid arthritis (RA). However, treatment of RA patients with sPLA(2)-IIA inhibitors shows only transient benefit. Using an activity-impaired sPLA(2)-IIA mutant protein (H48Q), we show that up-regulation of TNF-dependent PGE(2) production and cyclooxygenase-2 (COX-2) induction by exogenous sPLA(2)-IIA in RA fibroblast-like synoviocytes (FLSs) is independent of its enzyme function. Selective cytosolic phospholipase A(2)-α (cPLA(2)-α) inhibitors abrogate TNF/sPLA(2)-IIA-mediated PGE(2) production without affecting COX-2 levels, indicating arachidonic acid (AA) flux to COX-2 occurs exclusively through TNF-mediated activation of cPLA(2)-α. Nonetheless, exogenous sPLA(2)-IIA, but not H48Q, stimulates both AA mobilization from FLSs and microparticle-derived AA release that is not used for COX-2-dependent PGE(2) production. sPLA(2)-IIA-mediated AA production is inhibited by pharmacological blockade of sPLA(2)-IIA but not cPLA(2)-α. Exogenous H48Q alone, like sPLA(2)-IIA, increases COX-2 protein levels without inducing PGE(2) production. Unlike TNF, sPLA(2)-IIA alone does not rapidly mobilize NF-κB or activate phosphorylation of p38 MAPK, two key regulators of COX-2 protein expression, but does activate the ERK1/2 pathway. Thus, sPLA(2)-IIA regulates AA flux through the cPLA(2)-α/COX-2 pathway in RA FLSs by up-regulating steady state levels of these biosynthetic enzymes through an indirect mechanism, rather than direct provision of substrate to the pathway. Inhibitors that have been optimized for their potency in enzyme activity inhibition alone may not adequately block the activity-independent function of sPLA(2)-IIA.  相似文献   

10.
We herein demonstrate that mast cells express all known members of the group II subfamily of secretory phospholipase A2 (sPLA2) isozymes, and those having heparin affinity markedly enhance the exocytotic response. Rat mastocytoma RBL-2H3 cells transfected with heparin-binding (sPLA2-IIA, -V, and -IID), but not heparin-nonbinding (sPLA2-IIC), enzymes released more granule-associated markers (beta-hexosaminidase and histamine) than mock- or cytosolic PLA2alpha (cPLA2alpha)-transfected cells after stimulation with IgE and Ag. Site-directed mutagenesis of sPLA2-IIA and -V revealed that both the catalytic and heparin-binding domains are essential for this function. Confocal laser and electron microscopic analyses revealed that sPLA2-IIA, which was stored in secretory granules in unstimulated cells, accumulated on the membranous sites where fusion between the plasma membrane and granule membranes occurred in activated cells. These results suggest that the heparin-binding sPLA2s bind to the perigranular membranes through their heparin-binding domain, and lysophospholipids produced in situ by their enzymatic action may facilitate the ongoing membrane fusion. In contrast to the redundant role of sPLA2-IIA, -IID, and -V in the regulation of degranulation, only sPLA2-V had the ability to markedly augment IgE/Ag-stimulated immediate PGD2 production, which reached a level comparable to that elicited by cPLA2alpha. The latter observation reveals an unexplored functional segregation among the three related isozymes expressed in the same cell population.  相似文献   

11.
Secretory phospholipase A(2) (sPLA(2)) produces lipids that stimulate polymorphonuclear neutrophils (PMNs). With the discovery of sPLA(2) receptors (sPLA(2)-R), we hypothesize that sPLA(2) stimulates PMNs through a receptor. Scatchard analysis was used to determine the presence of a sPLA(2) ligand. Lysates were probed with an antibody to the M-type sPLA(2)-R, and the immunoreactivity was localized. PMNs were treated with active and inactive (+EGTA) sPLA(2) (1-100 units of enzyme activity/ml, types IA, IB, and IIA), and elastase release and PMN adhesion were measured. PMNs incubated with inactive, FITC-linked sPLA(2)-IB, but not sPLA(2)-IA, demonstrated the presence of a sPLA(2)-R with saturation at 2.77 fM and a K(d) of 167 pM. sPLA(2)-R immunoreactivity was present at 185 kDa and localized to the membrane. Inactive sPLA(2)-IB activated p38 MAPK, and p38 MAPK inhibition attenuated elastase release. Active sPLA(2)-IA caused elastase release, but inactive type IA did not. sPLA(2)-IB stimulated elastase release independent of activity; inactive sPLA(2)-IIA partially stimulated PMNs. sPLA(2)-IB and sPLA(2)-IIA caused PMN adhesion. We conclude that PMNs contain a membrane M-type sPLA(2)-R that activates p38 MAPK.  相似文献   

12.
Endotoxic shock is a systemic inflammatory process, involving a variety of proinflammatory mediators. Two types of secretory phospholipase A2 (sPLA2) have been implicated in this process. Group IB sPLA2 (PLA2-IB) binds to the PLA2 receptor (PLA2R), and PLA2R-deficient mice exhibit resistance to endotoxin-induced lethality with reduced plasma levels of proinflammatory cytokines, such as TNF-alpha. Group IIA sPLA2 (PLA2-IIA) is found in many tissues and cell types, and local and systemic levels are elevated under numerous inflammatory conditions including sepsis. In this study, we investigated the effect of a specific sPLA2 inhibitor, indoxam, on murine endotoxic shock. Indoxam suppressed the elevation of plasma TNF-alpha with a similar potency in PLA2-IIA-expressing and PLA2-IIA-deficient mice after LPS challenge. In PLA2-IIA-deficient mice, indoxam also suppressed the elevation of plasma IL-1beta, IL-6 and NO, and prolonged survival after LPS challenge. Indoxam was found to block the PLA2-IB binding to murine PLA2R with a high potency (Ki=30 nM). The inhibitory effects of indoxam on the LPS-induced elevation of plasma TNF-alpha levels could not be observed in mice deficient in PLA2R. These findings suggest that indoxam blocks the production of proinflammatory cytokines during endotoxemia through PLA2-IIA-independent mechanisms, possibly via blockade of the PLA2R function.  相似文献   

13.
Both cytosolic PLA(2) (cPLA(2)) and secretory PLA(2) (sPLA(2)) have been implicated in pathology of cerebral ischemia. However, which of PLA(2) isoforms in astrocytes is responsible for arachidonic acid (AA) release contributing to their ischemic injury remains to be determined. The aim of the present study was to investigate the time-dependent activation of cPLA(2) and sPLA(2) in astrocytes exposed to combined oxygen glucose deprivation (OGD) as well as to evaluate the effectiveness of their pharmacological blockage as a method of preventing ischemic damage of the glial cells. It was shown that exposure of cultured astrocytes to OGD (0.5-24h) causes an increase in cPLA(2) and sPLA(2) expression and activity. The role of AA liberated mainly by cPLA(2) in the process of apoptosis was also demonstrated. To confirm the specific role of cPLA(2) and sPLA(2) in the mechanism of cells injury by OGD exposure, the effect of AACOCF(3) as cPLA(2) inhibitor and 12-epi-scalaradial as sPLA(2) inhibitor on AA release was examined. It was proved that simultaneous pharmacological blockade of enzymatic activity of cPLA(2) and sPLA(2) during OGD by AACOCF(3) and 12-epi-scalaradial substantially improves survival of ischemic injured glial cells.  相似文献   

14.
Oxidant stress and phospholipase A2 (PLA2) activation have been implicated in numerous proinflammatory responses of the mesangial cell (MC). We investigated the cross-talk between group IValpha cytosolic PLA2 (cPLA2alpha) and secretory PLA2s (sPLA2s) during H2O2-induced arachidonic acid (AA) release using two types of murine MC: (i). MC+/+, which lack group IIa and V PLA2s, and (ii). MC-/-, which lack groups IIa, V, and IValpha PLA2s. H2O2-induced AA release was greater in MC+/+ compared with MC-/-. It has been argued that cPLA2alpha plays a regulatory role enhancing the activity of sPLA2s, which act on phospholipids to release fatty acid. Group IIa, V, or IValpha PLA2s were expressed in MC-/- or MC+/+ using recombinant adenovirus vectors. Expression of cPLA2alpha in H2O2-treated MC-/- increased AA release to a level approaching that of H2O2-treated MC+/+. Expression of either group IIa PLA2 or V PLA2 enhanced AA release in MC+/+ but had no effect on AA release in MC-/-. When sPLA2 and cPLA2alpha are both present, the effect of H2O2 is manifested by preferential release of AA compared with oleic acid. Inhibition of the ERK and protein kinase C signaling pathways with the MEK-1 inhibitor, U0126, and protein kinase C inhibitor, GF 1092030x, respectively, and chelating intracellular free calcium with 1,2-bis(2-aminophenoyl)ethane-N,N,N',N'-tetraacetic acid-AM, which also reduced ERK1/2 activation, significantly reduced H2O2-induced AA release in MC+/+ expressing either group IIa or V PLA2s. By contrast, H2O2-induced AA release was not enhanced when ERK1/2 was activated by infection of MC+/+ with constitutively active MEK1-DD. We conclude that the effect of group IIa and V PLA2s on H2O2-induced AA release is dependent upon the presence of cPLA2alpha and the activation of PKC and ERK1/2. Group IIa and V PLA2s are regulatory and cPLA2alpha is responsible for AA release.  相似文献   

15.
We previously described that recombinant interleukin-1beta (IL-1beta) induced the significant release of substance P (SP) via a cyclooxygenase (COX) pathway in primary cultured rat dorsal root ganglion (DRG) cells. In the present study, we examined the involvement of two types of phospholipase A2 (PLA2) enzymes, which lie upstream of COX in the prostanoid-generating pathway, in the IL-1beta-induced release of SP from DRG cells. The expression of type IIA secretory PLA2 (sPLA2 -IIA) mRNA was undetectable by ribonuclease protection assay in non-treated DRG cells, while in DRG cells incubated with 1 ng/mL of IL-1beta, the expression was induced in a time-dependent manner. On the other hand, type IV cytosolic PLA2 (cPLA2 ) mRNA was constitutively expressed in the non-treated DRG cells, and treatment with 1 ng/mL of IL-1beta for 3 h significantly increased the levels of cPLA2 mRNA. The IL-1beta-induced SP release was significantly inhibited by the sPLA2 inhibitor, thioetheramide phosphorylcholine (TEA-PC), and the cPLA2 inhibitor, arachidonyl trifluoromethyl ketone (AACOCF3 ). Furthermore AACOCF3 suppressed the induction of sPLA2 -IIA mRNA expression induced by IL-1beta. These observations suggested that two types of PLA2, sPLA2 -IIA and cPLA2, were involved in the IL-1beta-induced release of SP from DRG cells, and that the functional cross-talk between the two enzymes might help to control their activity in the prostanoid-generating system in DRG cells. These events might be key steps in the inflammation-induced hyperactivity in primary afferent neurons of spinal cord.  相似文献   

16.
17.
目的 为了构建人分泌型磷脂酶A2(secretary phospholipase A2, sPLA2-IIA) 的有效表达系统,本文从胎脾中提取总RNA,采用RT-PCR方法扩增出编码sPLA2-IIA的基因定向地克隆于硫氧环蛋白基因融合表达载体pET32a的TrxA基因3’末端,构建符合读码框的融合表达载体pET32a-sPLA2-IIA。37℃下经IPTG诱导,hsPLA2-IIA融合蛋白在大肠杆菌BL21(DE3)中获得高效表达,表达产物以包涵体的形式存在。包涵体经8M尿素溶解、复性后检测结果显示具有较高的催化活性并呈现剂量依赖关系。结论:以大肠杆菌为宿主,成功表达了hsPLA2-IIA蛋白,为进一步进行hsPLA2-IIA的大量生产和功能研究奠定了基础。  相似文献   

18.
Group X secretory phospholipase A2 (sPLA2-X) and cytosolic phospholipase A2 alpha (cPLA2alpha) are involved in the release of arachidonic acid (AA) from membrane phospholipids linked to the eicosanoid production in various pathological states. Recent studies have indicated the presence of various types of cross-talk between sPLA2s and cPLA2alpha resulting in effective AA release. Here we examined the dependence of sPLA2-X-induced potent AA release on the cPLA2alpha activation by using specific cPLA2alpha or sPLA2 inhibitors as well as cPLA2alpha-deficient mice. We found that Pyrrophenone, a cPLA2alpha-specific inhibitor, did not suppress the sPLA2-X-induced potent AA release and prostaglandin E2 formation in mouse spleen cells. Furthermore, the amount of AA released by sPLA2-X from spleen cells was not significantly altered by cPLA2alpha deficiency. These results suggest that sPLA2-X induces potent AA release without activation of cPLA2a, which might be relevant to eicosanoid production in some pathological states where cPLA2a is not activated.  相似文献   

19.
Group X secretory phospholipase A(2) (sPLA(2)-X) possesses several structural features characteristic of both group IB and IIA sPLA(2)s (sPLA(2)-IB and -IIA) and is postulated to be involved in inflammatory responses owing to its restricted expression in the spleen and thymus. Here, we report the purification of human recombinant COOH-terminal His-tagged sPLA(2)-X, the preparation of its antibody, and the purification of native sPLA(2)-X. The affinity-purified sPLA(2)-X protein migrated as various molecular species of 13-18 kDa on SDS-polyacrylamide gels, and N-glycosidase F treatment caused shifts to the 13- and 14-kDa bands. NH(2)-terminal amino acid sequencing analysis revealed that the 13-kDa form is a putative mature sPLA(2)-X and the 14-kDa protein possesses a propeptide of 11 amino acid residues attached at the NH(2) termini of the mature protein. Separation with reverse-phase high performance liquid chromatography revealed that N-linked carbohydrates are not required for the enzymatic activity and pro-sPLA(2)-X has a relatively weak potency compared with the mature protein. The mature sPLA(2)-X induced the release of arachidonic acid from phosphatidylcholine more efficiently than other human sPLA(2) groups (IB, IIA, IID, and V) and elicited a prompt and marked release of arachidonic acid from human monocytic THP-1 cells compared with sPLA(2)-IB and -IIA with concomitant production of prostaglandin E(2). A prominent release of arachidonic acid was also observed in sPLA(2)-X-treated human U937 and HL60 cells. Immunohistochemical analysis of human lung preparations revealed its expression in alveolar epithelial cells. These results indicate that human sPLA(2)-X is a unique N-glycosylated sPLA(2) that releases arachidonic acid from human myeloid leukemia cells more efficiently than sPLA(2)-IB and -IIA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号