首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
In the protein disulfide-introducing system of Escherichia coli, plasma membrane-integrated DsbB oxidizes periplasmic DsbA, the primary disulfide donor. Whereas the DsbA-DsbB system utilizes the oxidizing power of ubiquinone (UQ) under aerobic conditions, menaquinone (MK) is believed to function as an immediate electron acceptor under anaerobic conditions. Here, we characterized MK reactivities with DsbB. In the absence of UQ, DsbB was complexed with MK8 in the cell. In vitro studies showed that, by binding to DsbB in a manner competitive with UQ, MK specifically oxidized Cys41 and Cys44 of DsbB and activated its catalytic function to oxidize reduced DsbA. In contrast, menadione used in earlier studies proved to be a more nonspecific oxidant of DsbB. During catalysis, MK8 underwent a spectroscopic transition to develop a visible violet color (lambdamax = 550 nm), which required a reduced state of Cys44 as shown previously for UQ color development (lambdamax = 500 nm) on DsbB. In an in vitro reaction system of MK8-dependent oxidation of DsbA at 30 degrees C, two reaction components were observed, one completing within minutes and the other taking >1 h. Both of these reaction modes were accompanied by the transition state of MK, for which the slower reaction proceeded through the disulfide-linked DsbA-DsbB(MK) intermediate. The MK-dependent pathway provides opportunities to further dissect the quinone-dependent DsbA-DsbB redox reactions.  相似文献   

2.
DsbA and DsbB are responsible for disulfide bond formation. DsbA is the direct donor of disulfides, and DsbB oxidizes DsbA. DsbB has the unique ability to generate disulfides by quinone reduction. It is thought that DsbB oxidizes DsbA via thiol disulfide exchange. In this mechanism, a disulfide is formed across the N-terminal pair of cysteines (Cys-41/Cys-44) in DsbB by quinone reduction. This disulfide is then transferred on to the second pair of cysteine residues in DsbB (Cys-104/Cys-130) and then finally transferred to DsbA. We have shown here the redox potential of the two disulfides in DsbB are -271 and -284 mV, respectively, and considerably less oxidizing than the disulfide of DsbA at -120 mV. In addition, we have found the Cys-104/Cys-130 disulfide of DsbB to actually be a substrate for DsbA in vitro. These findings indicate that the disulfides in DsbB are unsuitable to function as the oxidant of DsbA. Furthermore, we have shown that mutants in DsbB that lack either pair or all of its cysteines are also capable of oxidizing DsbA. These unexpected findings raise the possibility that the oxidation of DsbA by DsbB does not occur via thiol disulfide exchange as is widely assumed but rather, directly via quinone reduction.  相似文献   

3.
Disulfide bond formation is required for the correct folding of many secreted proteins. Cells possess protein-folding catalysts to ensure that the correct pairs of cysteine residues are joined during the folding process. These enzymatic systems are located in the endoplasmic reticulum of eukaryotes or in the periplasm of Gram-negative bacteria. This review focuses on the pathways of disulfide bond formation and isomerization in bacteria, taking Escherichia coli as a model.  相似文献   

4.
Native protein disulfide bond formation in the endoplasmic reticulum (ER) requires protein disulfide isomerase (PDI) and Ero1p. Here we show that oxidizing equivalents flow from Ero1p to substrate proteins via PDI. PDI is predominantly oxidized in wild-type cells but is reduced in an ero1-1 mutant. Direct dithiol-disulfide exchange between PDI and Ero1p is indicated by the capture of PDI-Ero1p mixed disulfides. Mixed disulfides can also be detected between PDI and the ER precursor of carboxypeptidase Y (CPY). Further, PDI1 is required for the net formation of disulfide bonds in newly synthesized CPY, indicating that PDI functions as an oxidase in vivo. Together, these results define a pathway for protein disulfide bond formation in the ER. The PDI homolog Mpd2p is also oxidized by Ero1p.  相似文献   

5.
Heme attachment to c-type cytochromes in bacteria requires cysteine thiols in the CXXCH motif of the protein. The involvement of the periplasmic disulfide generation system in this process remains unclear. We undertake a systematic evaluation of the role of DsbA and DsbD in cytochrome c biogenesis in Escherichia coli and show unequivocally that DsbA is not essential for holocytochrome production under aerobic or anaerobic conditions. We also prove that DsbD is important but not essential for maturation of c-type cytochromes. We discuss the findings in the context of a model in which heme attachment to, and oxidation of, the apocytochrome are competing processes.  相似文献   

6.
Disulfide bond formation is a catalyzed process in vivo. In prokaryotes, the oxidation of cysteine pairs is achieved by the transfer of disulfides from the highly oxidizing DsbA/DsbB catalytic machinery to substrate proteins. The oxidizing power utilized by this system comes from the membrane-embedded electron transport system, which utilizes molecular oxygen as a final oxidant. Proofreading of disulfide bond formation is performed by the DsbC/DsbD system, which has the ability to rearrange non-native disulfides to their native configuration. These disulfide isomerization reactions are sustained by a constant supply of reducing power provided by the cytoplasmic thioredoxin system, utilizing NADPH as the ultimate electron source.  相似文献   

7.
The Escherichia coli heat-stable enterotoxin STp is synthesized as a precursor consisting of pre, pro and mature regions. Mature STp is released into the culture supernatant and is composed of 18-amino-acid resides which contain three intramolecular disulfide bonds. The involvement of DsbA in the formation of the disulfide bonds of STp was examined in this study. A dsbA mutant was transformed with a plasmid harboring the STp gene, and the ST activity was significantly lower than that of the parent strain harboring the same plasmid. Furthermore, purified DsbA induced the conversion of synthetic STp peptide (inactive form) to the active form and increased the ST activity of the culture supernatant derived from the dsbA transformants. These results showed that DsbA directly catalyzes the formation of the disulfide bonds of STp. DsbA is located in periplasmic space, where STp is released as an intermediate form consisting of pro and mature regions. To examine the effect of the pro region on the action of DsbA, we replaced the cysteine residue at position 39 and tested the effect in vivo. The substitution caused a significant decrease of ST activity in the culture supernatant, the accumulation of inactive ST in periplasmic space, and an alteration in the cleavage site of the intermediate of STp. We conclude that Cys-39 is important for recognition by the processing enzymes required for the maturation of STp.  相似文献   

8.
The rapid formation of native disulfide bonds in cellular proteins is necessary for the efficient use of cellular resources. This process is catalyzed in vitro by protein disulfide isomerase (PDI), with the PDI1 gene being essential for the viability of Saccharomyces cerevisiae. PDI is a member of the thioredoxin (Trx) family of proteins, which have the active-site motif CXXC. PDI contains two Trx domains as well as two domains unrelated to the Trx family. We find that the gene encoding Escherichia coli Trx is unable to complement PDI1 null mutants of S.cerevisiae. Yet, Trx can replace PDI if it is mutated to have a CXXC motif with a disulfide bond of high reduction potential and a thiol group of low pKa. Thus, an enzymic thiolate is both necessary and sufficient for the formation of native disulfide bonds in the cell.  相似文献   

9.
We have found that the in vivo folding of periplasmic Escherichia coli Cu,Zn superoxide dismutase is assisted by DsbA, which catalyzes the efficient formation of its single disulfide bond, whose integrity is essential to ensure full catalytic activity to the enzyme. In line with these findings, we also report that the production of recombinant Xenopus laevis Cu,Zn superoxide dismutase is enhanced when the enzyme is exported in the periplasmic space or is expressed in thioredoxin reductase mutant strains. Our data show that inefficient disulfide bond oxidation in the bacterial cytoplasm inhibits Cu,Zn superoxide dismutase folding in this cellular compartment.  相似文献   

10.
Here we report the first use of disulfide bond formation to stabilize the R allosteric structure of Escherichia coli aspartate transcarbamoylase. In the R allosteric state, residues in the 240s loop from two catalytic chains of different subunits are close together, whereas in the T allosteric state they are far apart. By substitution of Ala-241 in the 240s loop of the catalytic chain with cysteine, a disulfide bond was formed between two catalytic chains of different subunits. The cross-linked enzyme did not exhibit cooperativity for aspartate. The maximal velocity was increased, and the concentration of aspartate required to obtain one-half the maximal velocity, [Asp](0.5), was reduced substantially. Furthermore, the allosteric effectors ATP and CTP did not alter the activity of the cross-linked enzyme. When the disulfide bonds were reduced by the addition of 1,4-dithio-dl-threitol the resulting enzyme had kinetic parameters very similar to those observed for the wild-type enzyme and regained the ability to be activated by ATP and inhibited by CTP. Small-angle x-ray scattering was used to verify that the cross-linked enzyme was structurally locked in the R state and that this enzyme after reduction with 1,4-dithio-dl-threitol could undergo an allosteric transition similar to that of the wild-type enzyme. The complete abolition of homotropic and heterotropic regulation from stabilizing the 240s loop in its closed position in the R state, which forms the catalytically competent active site, demonstrates the significance that the quaternary structural change and closure of the 240s loop has in the functional mechanism of aspartate transcarbamoylase.  相似文献   

11.
Functional expression of lipase B from Pseudozyma antarctica (PalB) in the cytoplasm of Escherichia coli BL21(DE3) and its mutant derivative Origami B(DE3) was explored. Coexpression of DsbA was found to be effective in enhancing PalB expression. The improvement was particularly pronounced with Origami B(DE3) as a host, suggesting that both folding and disulfide bond formation may be major factors limiting PalB expression. Fusion tag technique was also explored by constructing several PalB fusions for the evaluation of their expression performance. While the solubility was enhanced for most PalB fusions, only the DsbA tag was effective in boosting PalB activity, possibly by both enhanced solubility and correct disulfide bond formation. Our results suggest that PalB activity is closely associated with correct disulfide bond formation, and increased solubilization by PalB fusions does not necessarily result in activity enhancement.  相似文献   

12.
We describe the NMR structure of DsbB, a polytopic helical membrane protein. DsbB, a bacterial cytoplasmic membrane protein, plays a key role in disulfide bond formation. It reoxidizes DsbA, the periplasmic protein disulfide oxidant, using the oxidizing power of membrane-embedded quinones. We determined the structure of an interloop disulfide bond form of DsbB, an intermediate in catalysis. Analysis of the structure and interactions with substrates DsbA and quinone reveals functionally relevant changes induced by these substrates. Analysis of the structure, dynamics measurements, and NMR chemical shifts around the interloop disulfide bond suggest how electron movement from DsbA to quinone through DsbB is regulated and facilitated. Our results demonstrate the extraordinary utility of NMR for functional characterization of polytopic integral membrane proteins and provide insights into the mechanism of DsbB catalysis.  相似文献   

13.
DsbB is a disulfide oxidoreductase present in the Escherichia coli plasma membrane. Its cysteine pairs, Cys41-Cys44 and Cys104-Cys130, facing the periplasm, as well as the bound quinone molecules play crucial roles in oxidizing DsbA, the protein dithiol oxidant in the periplasm. In this study, we characterized quinone-free forms of DsbB prepared from mutant cells unable to synthesize ubiquinone and menaquinone. While such preparations lacked detectable quinones, previously reported lauroylsarcosine treatment was ineffective in removing DsbB-associated quinones. Moreover, DsbB-bound quinone was shown to contribute to the redox-dependent fluorescence changes observed with DsbB. Now we reconfirmed that redox potentials of cysteine pairs of quinone-free DsbB are lower than that of DsbA, as far as determined in dithiothreitol redox buffer. Nevertheless, the quinone-free DsbB was able to oxidize approximately 40% of DsbA in a 1:1 stoichiometric reaction, in which hemi-oxidized forms of DsbB having either disulfide are generated. It was suggested that the DsbB-DsbA system is designed in such a way that specific interaction of the two components enables the thiol-disulfide exchanges in the "forward" direction. In addition, a minor fraction of quinone-free DsbB formed the DsbA-DsbB disulfide complex stably. Our results show that the rapid and the slow pathways of DsbA oxidation can proceed up to significant points, after which these reactions must be completed and recycled by quinones under physiological conditions. We discuss the significance of having such multiple reaction pathways for the DsbB-dependent DsbA oxidation.  相似文献   

14.
Disulfide bond formation occurs in secreted proteins in Escherichia coli when the disulfide oxidoreductase DsbA, a soluble periplasmic protein, nonspecifically transfers a disulfide to a substrate protein. The catalytic disulfide of DsbA is regenerated by the inner-membrane protein DsbB. To help identify the specificity determinants in DsbB and to understand the nature of the kinetic barrier preventing direct oxidation of newly secreted proteins by DsbB, we imposed selective pressure to find novel mutations in DsbB that would function to bypass the need for the disulfide carrier DsbA. We found a series of mutations localized to a short horizontal α-helix anchored near the outer surface of the inner membrane of DsbB that eliminated the need for DsbA. These mutations changed hydrophobic residues into nonhydrophobic residues. We hypothesize that these mutations may act by decreasing the affinity of this α-helix to the membrane. The DsbB mutants were dependent on the disulfide oxidoreductase DsbC, a soluble periplasmic thiol-disulfide isomerase, for complementation. DsbB is not normally able to oxidize DsbC, possibly due to a steric clash that occurs between DsbC and the membrane adjacent to DsbB. DsbC must be in the reduced form to function as an isomerase. In contrast, DsbA must remain oxidized to function as an oxidizing thiol-disulfide oxidoreductase. The lack of interaction that normally exists between DsbB and DsbC appears to provide a means to separate the DsbA-DsbB oxidation pathway and the DsbC-DsbD isomerization pathway. Our mutants in DsbB may act by redirecting oxidant flow to take place through the isomerization pathway.  相似文献   

15.
The membrane protein DsbB from Escherichia coli is essential for disulfide bond formation and catalyses the oxidation of the periplasmic dithiol oxidase DsbA by ubiquinone. DsbB contains two catalytic disulfide bonds, Cys41-Cys44 and Cys104-Cys130. We show that DsbB directly oxidizes one molar equivalent of DsbA in the absence of ubiquinone via disulfide exchange with the 104-130 disulfide bond, with a rate constant of 2.7 x 10 M(-1) x s(-1). This reaction occurs although the 104-130 disulfide is less oxidizing than the catalytic disulfide bond of DsbA (E(o)' = -186 and -122 mV, respectively). This is because the 41-44 disulfide, which is only accessible to ubiquinone but not to DsbA, is the most oxidizing disulfide bond in a protein described so far, with a redox potential of -69 mV. Rapid intramolecular disulfide exchange in partially reduced DsbB converts the enzyme into a state in which Cys41 and Cys44 are reduced and thus accessible for reoxidation by ubiquinone. This demonstrates that the high catalytic efficiency of DsbB results from the extreme intrinsic oxidative force of the enzyme.  相似文献   

16.
G Jander  N L Martin    J Beckwith 《The EMBO journal》1994,13(21):5121-5127
DsbB is a protein component of the pathway that leads to disulfide bond formation in periplasmic proteins of Escherichia coli. Previous studies have led to the hypothesis that DsbB oxidizes the periplasmic protein DsbA, which in turn oxidizes the cysteines in other periplasmic proteins to make disulfide bonds. Gene fusion approaches were used to show that (i) DsbB is a membrane protein which spans the membrane four times and (ii) both the N- and C-termini of the protein are in the cytoplasm. Mutational analysis shows that of the six cysteines in DsbB, four are necessary for proper DsbB function in vivo. Each of the periplasmic domains of the protein has two essential cysteines. The two cysteines in the first periplasmic domain are in a Cys-X-Y-Cys configuration that is characteristic of the active site of other proteins involved in disulfide bond formation, including DsbA and protein disulfide isomerase.  相似文献   

17.
We have identified and functionally characterized a new Escherichia coli gene, dsbC, whose product is involved in disulfide bond formation in the periplasmic space. It corresponds to a previously sequenced open reading frame mapping upstream of recJ with no previously assigned function. Null mutations in dsbC were obtained using a screen for dithiothreitol (DTT)-sensitive mutants and were shown to result in the accumulation of reduced forms of a variety of disulfide bond-containing periplasmic proteins. This defect could be rescued by the addition of either oxidized DTT or cystine or by multicopy expression of dsbA, a known periplasmic disulfide oxidase. The DsbC protein is synthesized as a precursor form of 25.5 kDa which is processed to a 23.3 kDa mature species located in the periplasmic space. The DsbC protein was overexpressed, purified to homogeneity and shown to catalyse the reduction of insulin in a DTT-dependent manner at levels comparable with those of purified DsbA. The replacement of either cysteine residue of the predicted active site, F-(X4)-C-G-Y-C, completely inactivates DsbC protein function. We have further shown that in vivo overexpression of DsbC can functionally substitute for a loss of DsbA function. Taken together, all of our results demonstrate that DsbC acts in vivo as a disulfide oxidase.  相似文献   

18.
The universally distributed heat-shock proteins (HSPs) are divided into classes based on molecular weight and sequence conservation. The members of at least two of these classes, the HSP60s and the HSP70S, have chaperone activity. Most HSP60s and many HSP70s feature a striking motif at or near the carboxyl terminus which consists of a string of repeated glycine and methionine residues. We have altered the groEL gene (encoding the essential Escherichia coli HSP60 chaperonin) so that the protein produced lacks its 16 final (including nine gly, and five met) residues. This truncated product behaves like the intact protein in several in vitro tests, the only discernible difference between the two proteins being in the rate at which ATP is hydrolysed. GroELtr can substitute for GroEL in vivo although cells dependent for survival on the truncated protein survive slightly less well during the stationary phase of growth. Elevated levels of the wild-type protein can suppress a number of temperature-sensitive mutations; the truncated protein lacks this ability.  相似文献   

19.
Native disulfide bond formation in proteins   总被引:3,自引:0,他引:3  
Native disulfide bond formation is critical for the proper folding of many proteins. Recent studies using newly identified protein oxidants, folding catalysts, and mutant cells provide insight into the mechanism of oxidative protein folding in vivo. This insight promises new strategies for more efficient protein production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号