共查询到19条相似文献,搜索用时 140 毫秒
1.
孵化温湿度对北草蜥孵化卵和孵出幼体的影响 总被引:18,自引:2,他引:18
北草晰孵化孵化基质吸收水分导致质量增加。24℃湿度对孵化卵的终末质量无显著影响;26℃和28℃时,高湿度孵化的卵终末质量较大。孵化卵终末重与初始重呈正相关,终末卵重的差异部分地由初始卵重决定。 相似文献
2.
水热环境对白条草蜥孵化卵和孵出幼体表型特征的影响 总被引:2,自引:0,他引:2
用4×2(温度×湿度)八种水热环境孵化安徽滁州琅琊山白条草蜥(Takydromus wolteri)卵,观测孵化卵重量变化、胚胎利用卵内物质和能量以及孵出幼体的特征。卵从孵化环境中吸水导致重量增加,卵重量的增加与入孵卵重量、孵化温度和基质湿度有关。两种孵化基质湿度对孵化期、孵化成功率、孵出幼体性比和大小都无显著影响。孵化期随恒定孵化温度的升高而缩短,27℃、30℃和33℃孵化期分别为32.5、24.9和23.0d,波动温度孵化期为31.1d。33℃孵化成功率最低(42.8%)。温度对孵化成功率和孵出幼体的性别无显著影响,但显著影响胚胎对卵内物质的动用、幼体的大小和重量。33℃不适宜孵化白条草蜥卵,该温度下孵出的幼体躯干小,剩余卵黄多,运动能力差。27℃和波动温度中孵出幼体躯干发育良好,各项被测定的特征指标极其相似。 相似文献
3.
作者以丽斑麻蜥(Eremias argus)为模型动物研究恒定和波动孵化温度对孵化成功率和孵出幼体表型的影响。卵在四个恒定[24 ,27 ,30 and 33 (±0·3)℃]、一个波动温度下孵化。不同温度处理下的孵化成功率相同,但孵出幼体表型不同。孵化期随孵化温度升高呈指数式缩短;在相同平均温度下,波动温度孵化卵的孵化期比恒温孵化卵长。在所有被检表型特征中,幼体的干重、剩余卵黄干重和运动表现更易受孵化温度影响。总体而言,低温(24℃、27℃)孵出幼体运动表现最佳,高温(33℃)孵出幼体最差、温和温度(30℃和波动温度)孵出幼体居中。本文研究数据显示: (1)丽斑麻蜥卵每日短期暴露于潜在致死的极端温度下对孵化成功率和孵出幼体形态特征无明显的不利效应; (2)温度波动对孵出幼体运动表现无促进作用,对孵化期的影响则不同于平均值相同的恒定温度。 相似文献
4.
研究了山地麻蜥和丽斑麻蜥实验条件下的卵及孵出幼体的特征.山地麻蜥产卵雌体的体长大于丽斑麻蜥,窝卵重小于丽斑麻蜥,但平均卵重和相对窝卵重与丽斑麻蜥相似.两种蜥蜴均通过增加卵长径和卵短径来增加卵重,但卵的外形不同,山地麻蜥卵较长.两种蜥蜴卵孵化过程中均吸水增重.相似孵化条件(波动温度、-12 kPa)下,山地麻蜥的孵化期明显比丽斑麻蜥长.山地麻蜥幼体的尾、头部大于丽斑麻蜥,但体重和SVL相似. 相似文献
5.
6.
孵化水热环境对渔异色蛇孵化卵和孵出幼体的影响 总被引:4,自引:6,他引:4
渔异色蛇卵孵化时能从环境中吸收水分导致质量增加,卵质量的增加与初始卵质量和孵化基质湿度有关。较大幅度的孵化基质湿度变化对孵化期、孵化成功率、胚胎动用孵内物质和能量、孵出幼体的性比、大小和质量无显著影响。孵化期随温度升高而缩短,并显示极强的窝间差异。温度对孵出幼体的性别无影响,但显著影响孵化成功率、胚胎对卵内物质和能量的动用、幼体的大小和质量、躯干和剩余卵黄的质量。孵出幼体总长的两性差异不显著,但雌体体长大于雄体而尾长小于雄体。32℃不适于孵化渔异色蛇卵,该温度下孵出的幼体躯干发育不良,剩余孵黄较多,尾部均呈畸形,孵化过程中能量转化率较低。24℃和26℃中孵出的幼体躯干发育良好,孵化过程中能量转化率较高,各项被测定的幼体特征指标均极相似。 相似文献
7.
草蜥属两种蜥蜴卵和幼体特征的比较研究 总被引:3,自引:0,他引:3
比较研究了南草蜥和北草蜥实验条件下的卵及幼体特征。南草蜥产卵雌体的体长、最大窝卵数、平均卵重小于北草蜥 ,相对窝卵重与北草蜥相似。两种蜥蜴均通过增加卵长径和卵短径来增加卵重 ,但卵外形明显不同 ,南草蜥的卵较长。两种蜥蜴卵孵化过程中均吸水增重。相同孵化温度 ( 2 6℃ )条件下 ,南草蜥的孵化期明显比北草蜥长。南草蜥幼体的体重、体长、头长和头宽的实测值小于北草蜥 ,尾长实测值与北草蜥无显著差异。南草蜥幼体的体重、头长和头宽的矫正平均值小于北草蜥 ,尾长矫正平均值大于北草蜥 ,体长矫正平均值与北草蜥无显著差异。 相似文献
8.
孵化温度对灰鼠蛇卵孵化期、孵化成功率和孵出幼体特征的影响 总被引:3,自引:0,他引:3
用4个恒定温(24-32℃)孵化灰鼠蛇卵,检测温度对孵化期,孵化成功率和孵出幼体特征的影响。在24-32℃范围内,孵化温度显影响孵化期及孵出幼体的体长和剩余卵黄大小,但不影响孵化成功率和孵出幼体的性别,体重,躯干重和脂肪体重。24,26,30和32℃孵化期分别为99.0,72.2,54.7和48.7d。24℃和26℃孵出幼体的体筮大于30℃和32℃孵出幼体;24℃和32℃孵同幼体内的卵黄较多。不同温度下发育的胚胎对卵内物质和能量的利用一定的差异,但差异不显。雌性幼体的体长,尾长和总长均大于雄性幼体,这些两性差异与孵化温度无关。孵出幼体和新生卵内容的灰分含量无显差异,孵化前后卵壳灰分含量也无显差异,表明灰鼠蛇的卵黄可提供胚胎发育所需的所有无机物。 相似文献
9.
10.
温湿度对山地麻蜥孵化卵、孵化成功率及孵出幼体特征的影响 总被引:1,自引:0,他引:1
用 6种温湿度条件孵化安徽宿州乾山山地麻蜥 (Eremiasbrenchleyi)卵 ,观测孵化卵质量变化、胚胎利用卵内物质和能量以及孵出幼体特征。卵在产出后 1h内收集 ,共设置 3× 2种温湿度处理 (温度分别为2 7、 30和 33℃ ;湿度分别为 - 2 2 0、 0kPa)。每隔 5d称卵重 ,直至幼体孵出。幼体经测量、称重后 ,解剖、分离为躯干、剩余卵黄和脂肪体三组分 ,用于成分测试。卵从环境中吸水导致质量增加 ,孵化温、湿度及其相互作用显著影响孵化卵的质量变化 :同一温度下 ,高湿度 (0kPa)孵化卵的终末质量大于低湿度 (- 2 2 0kPa)孵化卵 ;同一湿度下 ,低温 (2 7和 30℃ )孵化卵的终末质量大于高温 (33℃ )孵化卵。温度显著影响孵化期 ,随温度的升高孵化期缩短 ;湿度及其与温度的相互作用对孵化期无显著影响。孵化温湿度对孵化成功率无显著影响。温度显著影响胚胎对卵内物质的动用、幼体大小、质量以及剩余卵黄质量 ;除剩余卵黄外 ,湿度及其与温度的相互作用不影响山地麻蜥孵出幼体几乎所有的被检测特征。 33℃孵出幼体的大小和质量均显著小于 2 7和 30℃ ,并特征性地具有较大的剩余卵黄。因此 ,33℃不适宜孵化山地麻蜥卵。 2 7℃和 30℃中孵出幼体躯干发育良好 ,各项被测定的特征指标极其相似。 相似文献
11.
研究白条草蜥卵在温、湿度分别为30℃、-12kPa的条件下,孵化过程中胚胎生长以及对物质和能量的动用。孵化过程中,每隔5d测定卵重。孵化第10、15、20天,分别解剖来自不同窝的卵15、15、12枚,分离为胚胎、卵黄和卵壳。初生幼体测量、称再后冰冻处死,随后解剖分离为躯干、剩余卵黄和腹脂肪体。所有材料65℃恒温干燥,用索氏脂肪提取仪测定脂肪含量,氧弹式热量计测定能量含量,马福炉测定无机物含量。白条草蜥卵的平均孵化期为24.7d。卵孵化时从基质中吸水导致重量增加。卵孵化0—15d、15~20d、20~24.7d,胚胎分别利用新生卵能量的11%、14%和75%。0—20d,胚胎生长缓慢;20d后生长迅速。卵孵化过程中,干重、非极性脂肪和能量的转化率分别为50.3%、24.9%和51.9%。初生幼体的能量组分为:躯干95.2%,脂肪2.2%,剩余卵黄2.6%。胚胎发育所需要的无机物来自卵黄和卵壳。结果显示,白条草蜥从卵到孵出幼体物质和能量较低的转化率主要与较高胚胎发育投资和较小的剩余卵黄有关。 相似文献
12.
北草蜥卵孵化过程中物质和能量的动态 总被引:2,自引:0,他引:2
研究北草蜥卵在温、湿度分别为 3 0℃、 -12kPa的条件下 ,孵化过程中物质和能量的动用以及胚胎生长。孵化过程中 ,每隔 5天称量卵重。孵化第 10天起 ,每隔 5天解剖来自不同窝的卵 15枚 ,并分离成胚胎、卵壳和卵黄三组分。孵出幼体称重后冰冻处死 ,之后解剖分离成躯干、剩余卵黄和脂肪体。所有材料 65℃烘至恒重 ,用索氏脂肪提取器测定脂肪含量 ,氧弹热量计测定能值 ,马福炉测定灰分含量。本研究北草蜥卵的孵化期为 2 8 1天。卵孵化时从基质中吸水导致重量增加。卵孵化 0 -10天、 11-2 0天、 2 1-2 5天、 2 6-2 8天 ,胚胎分别利用新生卵能量的 12 %、 3 5%、 3 7%和 15%。 0 -10天 ,胚胎生长较缓慢 ;10天后生长迅速。卵孵化过程中 ,干物质、非极性脂肪和能量的转化率分别为 69 7%、 3 7 0 %和 53 1%。初生幼体的能量组分为 :躯干95 2 % ,脂肪 2 4% ,剩余卵黄 2 4%。本研究结果显示 :北草蜥从新生卵到孵出幼体的物质和能量转化率较低 ;胚胎发育所需要的无机物来自卵黄和卵壳 相似文献
13.
14.
Influence of incubation temperature on morphology, locomotor performance, and early growth of hatchling wall lizards (Podarcis muralis) 总被引:18,自引:0,他引:18
Eggs of wall lizards (Podarcis muralis) were incubated at three temperatures approaching the upper limit of viability for embryonic development in this species (26, 29, and 32 degrees C) to assess the influence of temperature on various aspects of hatchling phenotype likely affecting fitness. The thermal environment affected size and several morphometric characteristics of hatchling lizards. Hatchlings from eggs incubated at 32 degrees C were smaller (snout-vent length, SVL) than those from 26 and 29 degrees C and had smaller mass residuals (from the regression on SVL) as well as shorter tail, head, and femur relative to SVL. Variation in the level of fluctuating asymmetry in meristic and morphometric traits associated with incubation temperatures was quite high but not clearly consistent with the prediction that environmental stress associated with the highest incubation temperatures might produce the highest level of asymmetry. When tested for locomotor capacity in trials developed at body temperatures of 32 and 35 degrees C, hatchlings from the 32 degrees C incubation treatment exhibited the worst performance in any aspect considered (burst speed, maximal length, and number of stops in the complete run). Repeated measures ANCOVAs (with initial egg mass as covariate) of snout-vent length and mass of lizards at days 0 and 20 revealed significant effects of incubation temperature only for mass, being again the hatchlings from eggs incubated at 32 degrees C those exhibiting the smallest final size. All together, our results evidenced a pervasive effect of thermal regime during incubation (and hence of nest site selection) on hatchling phenotypes. However, incubation temperature does not affect hatchling phenotypes in a continuous way; for most of the analysed traits a critical threshold seems to exist between 29 and 32 degrees C, so that hatchlings incubated at 32 degrees C exhibited major detrimental effects. J. Exp. Zool. 286:422-433, 2000. 相似文献
15.
热环境对虎斑颈槽蛇卵孵化期、孵化成功率和孵出幼体特征的影响 总被引:2,自引:0,他引:2
用恒温(24、27、30和33C)和波动温度(平均26.1C,范围20.1—32.7C)孵化虎斑颈槽蛇(Rhabdophis tigrinus lateralis)卵,检测热环境对孵化期、孵化成功率和孵出幼体的影响。孵化热环境显著影响孵化期、孵化成功率和胚胎畸形率,对孵出幼体性别无显著影响。孵化期随孵化温度升高而缩短,24、27、30和33C的平均孵化期分别为45.0、32.7、27.3和26.0d,波动温度的平均孵化期为37.9d。33C孵化成功率最低(16.7%),胚胎畸形率最高(100%)。孵出幼体总性比(雌性/雄性=0.6)不显著偏离1:1。孵出幼体的尾长显示两性异形,雄性尾长大于雌性;其它被检幼体特征无显著的两性差异。24、27和30C以及波动温度孵出幼体的所有被检指标均无显著差异。33C孵出幼体的体重和个体大小小于其它热环境中孵出的幼体,并特征性地具有较小的躯干、较大的剩余卵黄。33C中胚胎发育的能耗显著大于其它热环境中胚胎发育的能耗。33(‘孵出幼体的灰分含量较低,但孵出卵卵壳较重。33C孵出幼体不能运动;其它热环境中孵出的幼体在跑道上表现良好,这些幼体的不问断运动的最大距离、每分钟运动距离和每分钟停顿次数无显著的差异。结果表明,持续将虎斑颈槽蛇卵暴露在33C条件下不利于该种胚胎发育并可能对胚胎具有致死性影响,波动温度孵卵有利于拓宽存活孵化温度范围。 相似文献
16.
17.
Melanie J. Elphick Richard Shine 《Biological journal of the Linnean Society. Linnean Society of London》1998,63(3):429-447
The phenotypes of hatchling reptiles are known to be affected by the thermal environments they experience during incubation, but the evolutionary and ecological significance of this phenotypic plasticity remains unclear. Crucial issues include: (i) the magnitude of effects elicited by thermal regimes in natural nests (as opposed to constant-temperature incubation); (ii) the persistence of these effects during ontogeny; and (iii) the consistency of these effects across different test conditions (does the thermal regime during embryogenesis simply shift the hatchling's thermal optimum for performance, or actually modify overall performance ability regardless of temperature?). We examined these questions by incubating eggs of scincid lizards (Bassiana duperreyi) from montane southeastern Australia, under two fluctuating-temperature regimes that simulated ‘cold’ and ‘hot’ natural nests. These thermal regimes substantially modified hatchling morphology (mass, body length, tail length, and the relationship between these variables), locomotor performance (running speeds over distances of 25 cm and lm), anti-predator ‘tactics’ and survival rates. The differences in locomotor performance persisted throughout the 20 weeks of our experiment. Lizards that emerged after ‘hot’ incubation were faster runners than their ‘cold’-incubated siblings under all thermal conditions that we tested. Thus, incubation temperatures modified overall locomotor ability, with only a minor effect on the set-point for optimum performance. The magnitude, persistence and consistency of these incubation-induced phenotypic modifications suggest that they may play an important role in evolutionary and ecological processes within lizard populations. 相似文献
18.
Hong‐Liang Lu Zhi‐Hua Lin Hong Li Xiang Ji 《Biological journal of the Linnean Society. Linnean Society of London》2014,113(1):283-296
Geographic variation in offspring size can be viewed as an adaptive response to local environmental conditions, but the causes of such variation remain unclear. Here, we compared the size and composition of eggs laid by female Chinese skinks (Plestiodon chinensis) from six geographically distinct populations in southeastern China to evaluate geographic variation in hatchling size. We also incubated eggs from these six populations at three constant temperatures (24, 28 and 32 °C) to evaluate the combined effects of incubation temperature and population source on hatchling size. Egg mass and composition varied among populations, and interpopulation differences in yolk dry mass and energy content were still evident after accounting for egg mass. Population mean egg mass and thus hatchling mass were greater in the colder localities. Females from three northern populations increased offspring size by laying larger eggs relative to their own size. Females from an inland population in Rongjiang could increase offspring size by investing relatively more dry materials and thus more energy into individual eggs without enlarging the size of their eggs. The degree of embryonic development at oviposition was almost the same across the six populations, so was the rate of embryonic development and thus incubation length at any given temperature. Both incubation temperature and population source affected hatchling traits examined, but the relative importance of these two factors varied between traits. Our data show that in P. chinensis hatchling traits reflecting overall body size (body mass, snout‐vent length and tail length) are more profoundly affected by population source. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 283–296. 相似文献