首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The decrease of sialic acid in plasma membrane glycoproteins and the expression of cell surface fibronectin were studied during the pre-replicative phase of liver regeneration. The aim of this study was to correlate these cell-surface events to the intracellular surge of calmodulin observed a few hours after partial hepatectomy. The fact that calmodulin decreased the specific activity of UDP-N-acetyl-D-glucosamine 2'-epimerase, a key regulatory enzyme in the biosynthesis of glycoprotein sialic acids, and that trifluoperazine prevented the desialylation indicates that the membrane desialylation is a calmodulin-dependent process. On the other hand, Western blotting using anti-rat fibronectin antibody in trifluoperazine-treated animals suggests that calmodulin may also be involved in the surface expression of fibronectin in regenerating hepatocytes.  相似文献   

2.
Mitochondrial bioenergetic impairment has been found in the organelles isolated from rat liver during the prereplicative phase of liver regeneration. To gain insight into the mechanism underlying this impairment, we investigated mitochondrial ultrastructure and membrane permeability properties in the course of liver regeneration after partial hepatectomy, with special interest to the role played by Ca2+ in this process. The results show that during the first day after partial hepatectomy, significant changes in the ultrastructure of mitochondria in situ occur. Mitochondrial swelling and release from mitochondria of both glutamate dehydrogenase and aspartate aminotransferase isoenzymes with an increase in the mitochondrial Ca2+ content were also observed. Cyclosporin-A proved to be able to prevent the changes in mitochondrial membrane permeability properties. At 24 h after partial hepatectomy, despite alteration in mitochondrial membrane permeability properties, no release of cytochrome c was found. The ultrastructure of mitochondria, the membrane permeability properties and the Ca2+ content returned to normal values during the replicative phase of liver regeneration. These results suggest that, during the prereplicative phase of liver regeneration, the changes in mitochondrial ultrastructure observed in liver specimens were correlated with Ca2+-induced permeability transition in mitochondria.  相似文献   

3.
Alterations of cell surface glycoconjugates have been observed in many developing systems and may be important in the physiological control of growth and differentiation. Liver regeneration after partial hepatectomy is a suitable model in which to study the regulatory mechanisms of cell proliferation in vivo. We have isolated the sinusoidal plasma membrane of hepatocytes at different times after partial hepatectomy. The sialic acid content and the SDS-polyacrylamide gel electrophoresis pattern of glycoproteins were determined. A decrease of periodic acid-Schiff-profiles, a change in the binding capacities of 125I-concanavalin A, a reduction of the sialic acid content and the appearance and disappearance of specific components have been observed during the pre-replicative phase of liver regeneration. These findings during this early period are consistent with the active involvement of the plasma membrane glycoproteins in the transition of cells to the proliferative state.  相似文献   

4.
Calcium/Ganglioside-Dependent Protein Kinase Activity in Rat Brain Membrane   总被引:14,自引:11,他引:3  
The effects of gangliosides on phosphorylation were studied in rat brain membrane. Gangliosides stimulated phosphorylation only in the presence of Ca2+ with major phosphoproteins of 45,000, 50,000, 60,000, and 80,000 daltons and high-molecular-weight species. In addition, gangliosides inhibited the phosphorylation of three proteins with molecular weights of 15,000, 20,000, and 78,000 daltons. The two low-molecular-weight proteins comigrated with rat myelin basic proteins. Ganglioside stimulation was dependent on the formation of a Ca2+-ganglioside complex since the calcium salt of gangliosides stimulated phosphorylation maximally. Disialo and trisialo gangliosides were more potent stimulators of kinase activity than the monosialo GM1 X GD1a was the most potent activator tested. Asialo-GM1, cerebroside, sialic acid, neuraminyllactose, sulfatide, and the acidic phospholipids phosphatidylserine and phosphatidylinositol did not stimulate kinase activity. The Ca2+-dependent, ganglioside-stimulated phosphorylation was qualitatively similar to the pattern for calmodulin-dependent phosphorylation. However, while calmodulin-dependent kinase activity was inhibited with an IC50 of 10 microM trifluoperazine, ganglioside-stimulated kinase was inhibited with an IC50 of 200 microM trifluoperazine. These results indicate that gangliosides have complex effects on membrane-associated kinase activities and suggest that Ca2+-ganglioside complexes are potent stimulators of membrane kinase activity.  相似文献   

5.
Sialidase activity has been studied in the human erythroleukemia K 562 cell line grown in vitro. The total sialidase activity was determined using disialoganglioside GD1a and fetuin as exogenous substrates. The enzymatic activity was stimulated by 0.08% Triton X-100 and reached the highest level at pH 4.0. Results obtained showed that gangliosides are hydrolysed more extensively than glycoproteins by K 562 sialidases. This finding could suggest that endogenous gangliosides may be the main source of metabolically available sialic acid in K 562 cell line. After treatment of K 562 cells by Adriamycin (40 nM), a potent anticancer drug, sialidase activity decreased by 40% as compared to control cells. This decrease occurs early during the first day of incubation with Adriamycin. This inhibition of sialidase activity could explain previous results obtained in our laboratory which show an enhanced sialylation of the membrane glycoconjugates after Adriamycin treatment.  相似文献   

6.
Under some cell culture conditions, recombinant glycoprotein therapeutics expressed in Chinese hamster ovary (CHO) cells lose sialic acid during the course of the culture (Sliwkowski et al., 1992; Munzert et al., 1996). A soluble sialidase of CHO cell origin degrades the expressed recombinant protein and has been shown to be released into the culture fluid as the viability of the cells decreases. To reduce the levels of the sialidase and to prevent desialylation of recombinant protein, a CHO cell line has been developed that constitutively expresses sialidase antisense RNA. Several antisense expression vectors were prepared using different regions of the sialidase gene. Co-transfection of the antisense constructs with a vector conferring puromycin resistance gave rise to over 40 puromycin resistant clones that were screened for sialidase activity. A 5' 474 bp coding segment of the sialidase cDNA, in the inverted orientation in an SV 40-based expression vector, gave maximal reduction of the sialidase activity to about 40% wild-type values. To test if this level of sialidase would lead to increased sialic acid content of an expressed recombinant protein, the 474 antisense clone was employed as a host for expression of human DNase as a model glycoprotein. The sialic acid content of the DNase produced in the antisense cultures was compared with material made in the wild-type parental cell line. About 20-37% increase in sialic acid content, or 0.6-1.1 mole of additional sialic acid out of a total of 3.0 mole on the product, was found on the DNase made in the antisense cell lines.  相似文献   

7.
Acidic and neutral sialidases (pH optimum 4.7 and 7.2, respectively) were assayed on human circulating erythrocytes during ageing. The assays were performed on intact erythrocytes and resealed erythrocyte ghost membranes. From young to senescent erythrocytes the acidic sialidase featured a 2.7-fold and 2.5-fold decrease in specific activity when measured on intact cells or resealed ghost membranes, whereas the neutral sialidase a 5-fold and 7-fold increase, respectively.The Ca2+-loading procedure was employed to mimic the vesiculation process occurring during erythrocyte ageing. Under these conditions the released vesicles displayed an elevated content of acidic sialidase, almost completely linked through a glycan phosphoinositide (GPI) anchor but no neutral sialidase activity, that was completely retained by remnant erythrocytes together with almost all the starting content of sialoglycoconjugates. The loss with vesiculation of acidic sialidase with a concomitant relative increase of neutral sialidase was more marked in young than senescent erythrocytes.The data presented suggest that during ageing erythrocytes loose acidic sialidase, and get enriched in the neutral enzyme, the vesiculation process, possibly involving GPI-anchors-rich membrane microdomains, being likely responsible for these changes. The enhanced neutral sialidase activity might account for the sialic acid loss occurring during erythrocyte ageing.  相似文献   

8.
The present study investigated the mechanism underlying alterations of cell surface sugar chains of Jurkat cells by inducing apoptosis with etoposide, an inhibitor of topoisomerase II. Within 3[emsp4 ]h of etoposide treatment, flowcytometric analysis revealed a decrease in Maackia amurensis agglutinin recognized 2,3-linked sialic acid moieties and an increase in Ricinus communis agglutinin recognized galactose. The results suggested that asialo-sugar chains on glycoconjugates were rapidly induced on the etoposide-treated cell surface. To clarify the desialylation mechanism, we studied 2,3-sialyltransferase mRNA expression and the activity of sialidase on the cell surface during etoposide-induced apoptosis. The expression of hST3Gal III and hST3Gal IV mRNAs were down-regulated and sialidase activity on the cell surface increased threefold within 2[emsp4 ]h of etoposide treatment. Moreover, the decrease in 2,3-linked sialic acid levels was significantly suppressed in the presence of 2,3-dehydro-2-deoxy-N-acetylneuraminic acid, an inhibitor of sialidase. These results suggested that activation or exposure of sialidase on the cell surface was induced by etoposide treatment and was the main cause of the decrease in sialic acids.  相似文献   

9.
An important challenge facing therapeutic protein production in mammalian cell culture is the cleavage of terminal sialic acids on recombinant protein glycans by the glycosidase enzymes released by lysed cells into the supernatant. This undesired phenomenon results in a protein product which is rapidly cleared from the plasma by asialoglycoprotein receptors in the liver. In this study, RNA interference was utilized as a genetic approach to silence the activity of sialidase, a glycosidase responsible for cleaving terminal sialic acids on IFN-gamma produced by Chinese Hamster Ovary (CHO) cells. We first identified a 21-nt double stranded siRNA that reduced endogenous sialidase mRNA and protein activity levels. Potency of each siRNA sequences was compared using real time RT-PCR and a sialidase activity assay. We next integrated the siRNA sequence into CHO cells, allowing production and selection of stable cell lines. We isolated stable clones with sialidase activity reduced by over 60% as compared to the control cell line. Micellar electrokinetic chromatography (MEKC), thiobarbituric acid assay (TAA), and high performance anion exchange chromatography (HPAEC) coupled to amperometric detection were performed to analyze glycan site occupancy, sialic acid content, and distribution of asialo-/sialylated-glycan structures, respectively. Two of the stable clones successfully retained the full sialic acid content of the recombinant IFN-gamma, even upon cells' death. This was comparable to the case where a chemically synthesized sialidase inhibitor was used. These results demonstrated that RNA interference of sialidase can prevent the desialylation problem in glycoprotein production, resulting improved protein quality during the entire cell culture process.  相似文献   

10.
The role of sialidase in the depletion of glomerular sialic acid induced by diabetes has been investigated in uninephrectomized rats. Four months after streptozotocin administration, diabetic rats showed an enhanced urinary excretion of albumin and transferrin, which was associated with a decrease of sialic acid concentration in isolated glomeruli. Despite the sialic acid depletion, the glomerular sialidase activity was unchanged. These results indicate that the decreased glomerular sialic acid concentration observed in diabetic nephropathy might be caused by a disturbance of the sialylation of glomerular structures.  相似文献   

11.
为了对工程中国仓鼠卵巢(CHO)细胞所产人源重组促红素(rhEPO)的N-糖基化特点进行考察,静置培养工程细胞后,通过等电聚焦和凝集素共沉淀对培养上清中的rhEPO进行分析,并对无血清培养上清中乳酸脱氢酶(LDH)和唾液酸酶活性进行检测,发现这株CHO细胞可以表达唾液酸含量较高的rhEPO蛋白。但是随着培养时间的延长,细胞的存活率逐渐降低,死亡的细胞将胞内的唾液酸酶释放到胞外,唾液酸酶的降解作用会造成N-糖链分枝末端的唾液酸占有率降低,导致rhEPO蛋白糖基化形态的变化。所使用的方法及得到的结果为进一步对工业过程进行分析提供了参考。  相似文献   

12.
A single intraperitoneal injection of isoproterenol induces resting cells from the acini of the mouse parotid gland to enter the proliferative cycle. Parotid plasma membrane from non-stimulated and isoproterenol-treated mice were prepared by differential centrifugation of the homogenates. Comparing the chemical composition of plasma membranes from non-stimulated and isoproterenol-treated mice, no variation in the phospholipid/protein ratio was observed. However, the levels of neutral sugars, hexosamines and sialic acid falls drastically in the early prereplicative phase. The decrease in neutral sugars and hexosamines in plasma membranes caused by isoproterenol is imitated by pilocarpine, which induces secretion but little or no increase in DNA synthesis. However, pilocarpine does not mobilize sialic acid from the plasma membrane. Moreover, dosis of isoproterenol that elicits secretion but not mitosis in the acinar cells, does not induce the movement of sialic acid from the plasma membrane. The mobilization of sialic acid from plasma membranes caused by isoproterenol was also demonstrated in an in vitro system. Treatment of the plasma membrane with chloro-form/methanol shows that around 60% of the sialic acid is present in the less polar phase. We conclude that the separation of sialic acid from the plasma membrane is one of the early steps in the sequence of events leading to DNA synthesis and cell division in the isoproterenol-stimulated parotid gland of mice.  相似文献   

13.
The sialic acids content of glycophorin of thalassemic erythrocyte membranes is about 25% lower than in glycophorin of normal erythrocyte membranes. Glycophorin extracted from old thalassemic erythrocytes separated by density centrifugation, has about half the sialic acids content found in glycophorin extracted from young thalassemic erythrocytes. Possible sialidase activity was sought in the plasma and erythrocyte membranes of thalassemic erythrocytes. No increased sialidase activity was detected in the plasma of the patients as compared to that of normal donors. Thus, other sites for sialidase activity, or other possibilities have to be explored to account for the increased sialic acid hydrolysis of glycophorin of the thalassemic erythrocytes.  相似文献   

14.
The procyclic stage of Trypanosoma brucei in the insect vector expresses a surface-bound trans-sialidase (TbTS) that transfers sialic acid from glycoconjugates in the environment to glycosylphosphatidylinositol-anchored proteins on its surface membrane. RNA interference against TbTS abolished trans-sialidase activity in procyclic cells but did not diminish sialidase activity, suggesting the presence of a separate sialidase enzyme for hydrolyzing sialic acid. A search of the T. brucei genome sequence revealed seven other putative genes encoding proteins with varying similarity to TbTS. RNA interference directed against one of these proteins, TbSA C, greatly decreased the sialidase activity but had no effect on trans-sialidase activity. The deduced amino acid sequence of TbSA C shares only 40% identity with TbTS but conserves most of the relevant residues required for catalysis. However, the sialidase has a tryptophan substitution for a tyrosine at position 170 that is crucial in binding the terminal galactose that accepts the transferred sialic acid. When this same tryptophan substitution in the sialidase was placed into the recombinant trans-sialidase, the mutant enzyme lost almost all of its trans-sialidase activity and increased its sialidase activity, further confirming that the gene and protein identified correspond to the parasite sialidase. Thus, in contrast to all other trypanosomes analyzed to date that express either a trans-sialidase or a sialidase but not both, T. brucei expresses these two enzymatic activities in two separate proteins. These results suggest that African trypanosomes could regulate the amount of critical sialic acid residues on their surface by modulating differential expression of each of these enzymes.  相似文献   

15.
Gangliosides located in the outer leaflet of the plasma membrane are important modulators of cellular functions. Our previous work has shown that in cultured human SK-N-MC neuroblastoma cells a sialidase residing in the same membrane selectively desialylates gangliosides with terminal sialic acid residues, causing a shift from higher species to GM1 and a conversion of GM3 to lactosylceramide. Inhibition of this sialidase by 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (NeuAc2en) resulted in increased cell proliferation and a loss of differentiation markers. In this study, we examined the occurrence and function of this ganglioside sialidase in other neuronal cells. Subcellular fractionation showed the sialidase to be located in the plasma membrane of all cell lines studied. The presence of the inhibitor NeuAc2en led to a profound decrease in the amount of the differentiation marker 200 kDa/70 kDa neurofilaments and an increase in cell proliferation in the cholinergic SK-N-MC and mixed cholinergic/adrenergic SK-N-FI and SK-N-DZ neuroblastoma lines, but had little or no effect in the human adrenergic SK-N-SH and SK-N-AS and the adrenergic/cholinergic PC12 cells from rat. The influence of the inhibitor on cell behaviour was paralleled by a diminished number of cholera toxin B-binding GM1 sites. The findings demonstrate that the plasma membrane ganglioside sialidase is an important element of proliferation and differentiation control in some, but not all, neuroblastoma cells and suggest that there might be a relationship between plasma membrane sialidase activity and cholinergic differentiation.  相似文献   

16.
Abstract— In agreement with other investigators it has been shown that endogenous as well as added gangliosides are a substrate for brain sialidase. The release of sialic acid was enhanced in the presence of Triton X-100; this might be due to the action of the detergent on the ganglioside micelles. The sialic acid release from endogenous gangliosides was observed over 48 h and compared with the effect of the sialidase on the endogenous glycoproteins. Though the hydrolysis of sialic acid from gangliosides is much faster in the first hours, after 48 h 40 per cent of the total bound sialic was released from both substrates at pH 4.0 and 37°C.
Sialoglycopeptides obtained from brain glycoproteins are also metabolized by the sialidase. No effect of Triton X-100 on this substrate has been observed. From sialoglycopeptides, fractions can be obtained by DEAE-Sephadex A-50 column chromatography with a sialic acid content from 8 to 26 per cent. The fractions with a high sialic acid content were about equally active towards brain sialidase as gangliosides. The results agree with the similar turnover rate observed for the carbohydrate chains from gangliosides and glycoproteins, but are in contrast to the observations of other investigators who have stated that glycoproteins are a poor substrate for brain sialidase. In our experiments bovine and ovine submaxillary mucins and sialyl-lactoses showed only slight activity compared to gangliosides and selected brain sialoglycopeptides.  相似文献   

17.
18.
Saito M  Sakiyama K  Shiota T  Ito M 《FEBS letters》2003,542(1-3):105-108
The effects of isoproterenol on sialidase activity in rat cardiomyocytes were examined. Administration of isoproterenol to rats (0.2 or 2 mg/kg body weight) produced an increase in sialidase activity in total membrane fraction of heart tissue within 120 min (121+/-13% of the control at 120 min after administration of 0.2 mg isoproterenol/kg, n=5, P<0.05). Sialidase activity in cardiomyocyte-derived H9c2 cells was also increased by treatment with isoproterenol (10 microM) for 60 min. The effect of isoproterenol on sialidase activity was amplified by the addition of 3-isobutyl-1-methylxanthine (IBMX). Sialidase activity in H9c2 cells was elevated by treatment with dibutyryl cAMP plus IBMX without isoproterenol. The content of N-acetylneuraminic acid in cells decreased by 22% after treatment with isoproterenol plus IBMX. These results suggest that sialidase activity in rat cardiomyocytes is regulated by beta-adrenergic stimulators via a cAMP-dependent process. The increased activity of sialidase may account for the reduction of sialic acid content of cells.  相似文献   

19.
The sialidase activities with GM3 ganglioside and sialyllactitol were demonstrated in the conditioned medium of human fibroblasts. pH versus activity profiles of conditioned medium with GM3 as substrate suggested the presence of two sialidases with optimal activities at pH 4.5 and pH 6.5. The GM3 sialidase activity at pH 6.5 was suppressed in the medium of contact-inhibited cells. This sialidase may function in the metabolism of cell surface GM3 since there was a selective loss of labeled sialic acid from GM3 at different times of incubation after pulse-labeling with a radioactive sialic acid precursor ([3H]N-acetyl-mannosamine) and a radioactive ceramide precursor ([14C]serine). In addition, a sialidase inhibitor, 2-deoxy-2, 3-dehydro-N-acetyl-neuraminic acid (NeuAc-2-en) resulted in a reversible growth inhibitory effect and the suppression of the sialidase activity in the medium. We have speculated that GM3 hydrolysis on the cell surface by the sialidase may be coordinated with the cell cycle and may be at its maximum during early in the G1 phase.  相似文献   

20.
A significant decrease in total carbohydrates and particularly in mannose, galactose and sialic acid has been observed in vitamin A-deficient rat liver lysosomal membrane. These alterations adversely affect the membrane permeability and structure-linked latency of the lysosomal enzymes.Significant reduction in the pH-dependent in vitro binding of the lysosomal arylsulfatase B to the highly purified membrane has been observed in vitamin A deficiency. This is attributed to the decrease in electro-negativity, mainly due to the observed reduction in negatively-charged sialic acid residues on the outer side of the membrane.Similar reduction in sialic acid content on the inner side of the membrane affects the microenvironment in the lysosomes. Intralysosomal pH, measured by computing the proteolytic activity of lysed lysosomes and of phagolysosomes, endocytosed with denatured 131I-labelled human serum albumin, is slightly but consistently higher in vitamin A-deficient groups compared to that in control one. This is reflected in the low rate of degradation of the entrapped proteins in vitamin A deficiency.The possible physiological significance of the observations is discussed with special reference to the loss of surface carbohydrates, particularly sialic acid, in vitamin A-deficient rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号