首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Every year numerous ecological, biochemical, and physiological studies are performed using members of the order Laminariales. Despite the fact that kelp are some of the most intensely studied macroalgae in the world, there is significant debate over the classification within and among the three “derived” families, the Alariaceae, Laminariaceae, and Lessoniaceae (ALL). Molecular phylogenies published for the ALL families have generated hypotheses strongly at odds with the current morphological taxonomy; however, conflicting phylogenetic hypotheses and consistently low levels of support realized in all of these studies have resulted in conservative approaches to taxonomic revisions. In order to resolve relationships within this group we have sequenced over 6000 bp from regions in the nuclear, chloroplast, and mitochondrial genomes and included 42 taxa in Bayesian, neighbor‐joining, and parsimony analyses. The result is the first comprehensive and well‐supported molecular phylogeny for the ALL complex of the Laminariales. We maintain the three recognized families (Alariaceae, Laminariaceae, and Lessoniaceae), but with vastly different compositions, as well as propose the Costariaceae fam. nov. for Agarum, Costaria, Dictyoneurum, and Thalassiophyllum, the only genera in the Laminariales with flattened, occasionally terete, stipes and either a perforate or reticulate blade. In addition, our data strongly support a split of the genus Laminaria. We resurrect the genus Saccharina Stackhouse for the Laminaria clade that does not contain L. digitata (Hudson) J.V. Lamouroux, the type of the genus.  相似文献   

2.
The morphologically diverse members of the Laminariales are separated into three families, the Alariaceae, Laminariaceae and Lessoniaceae, on the basis of developmental features exhibited at the stipeblade transition zone. We have investigated the relationships of lessoniacean taxa with those of alariacean and laminariacean affinity. This was done by completing phylogenetic analyses of 3 small-subunit (SSU) rRNA gene (113 bp), first internal transcribed spacer (ITS 1), 5.8S rRNA gene and second internal transcribed spacer (ITS2)(12 bp) sequence data from a variety of taxa. In summary, the Alariaceae and Lessoniaceae are polyphyletic. We present a restricted view of the Alariaceae, including only Alaria and Pterygophora of the genera usually placed in this family, and transfer the monotypic genus Lessoniopsis to this group. Current theories of kelp evolution and biogeography must be reconsidered in view of our data.  相似文献   

3.
A previously unknown species of kelp was collected on Kagamil Island, Aleutian Islands. The species can be easily distinguished from any known laminarialean alga: the erect sporophytic thallus is composed of a thin lanceolate blade attaining ~2 m in height and ~0.50 m in width, without midrib, and the edge of the blade at the transition zone is thickened to form a V‐shape; the stipe is solid and flattened, slightly translucent, attaining ~1 m in length; the holdfast is semidiscoidal and up to 0.15 m in diameter. Anatomically, the blade has the typical trumpet‐shaped hyphae characteristic of the Chordaceae and derived foliose laminarialean species (i.e., Alariaceae/Laminariaceae/Lessoniaceae). No hair pits or mucilaginous structures were observed on the blade or stipe. No fertile sporophytes were collected, but abundant juvenile sporophytes were observed in the field. In the molecular phylogenetic analyses using chloroplast rbcL gene, nuclear ITS1‐5.8S‐ITS2 rDNA, and mitochondria nad6 DNA sequences, the new species (Aureophycus aleuticus gen. et sp. nov.) showed a closer relationship with Alariaceae of conventional taxonomy, or the “Group 1” clade of Lane et al. (2006) including Alaria and related taxa than with other groups, although the species was not clearly included in the group. Aureophycus may be a key species in elucidating the evolution of the Alariaceae within the Laminariales. Because of the lack of information on reproductive organs and insufficient resolution of the molecular analyses, we refrain from assigning the new species to a family, but we place the new species in a new genus in the Laminariales.  相似文献   

4.
Concatenated sequences from the plastid-encoded RuBisCo spacer and nuclear-encoded rDNA ITS region of the Alariaceae, Laminariaceae, and Lessoniaceae as currently recognized were used to determine the phylogeny of kelps (Phaeophyceae). Our analyses indicate that all taxa in the Alariaceae, Laminariaceae, and Lessoniaceae form a monophyletic lineage (the Laminariales sensu stricto). The phylogenetic analyses show that the kelps form eight well-supported clades (represented by Egregia, Laminaria, Hedophyllum, Macrocystis, Alaria, Agarum, Ecklonia, and Lessonia) that conform to the tribes of the current morphological classification system of the "advanced" kelps. Our results suggest that the kelps should be classified into eight families rather than the three that are presently used. The interrelationships among the eight lineages were, however, unresolved in the phylogenetic analyses. In all trees, Egregia diverged first and is the sister to the other kelp taxa. Our phylogenetic analyses also indicate that Kjellmaniella and Laminaria do not form a monophyletic group. Taken together, the RuBisCo spacer and rDNA ITS prove useful for understanding the evolutionary history of the advanced kelps and provide a new framework for establishing the systematics of these commercially important brown algae.  相似文献   

5.
6.
Among the co‐dominant molecular markers, microsatellite loci have a number of advantages in population genetic studies. However, the different methods to hunt these markers are expensive, time consuming, and they require sophisticated laboratory equipment. Using in one species the microsatellites primers originally described for another one saves time and reduces costs. Examples in the literature revealed that microsatellites described for Gracilaria gracilis from France have not worked for other members of the Gracilariales. The results were not very promising, at least for Gracilaria chilensis from Chile. In this study, a number of microsatellite loci described for Laminaria digitata (Laminariaceae) from France were amplified and sequenced in two Lessonia (Lessoniaceae) species from Chile. Preliminary results show a partial conservation of both, flanking and tandem repeat regions. Some polymorphism has also been detected in Lessonia spp. The higher molecular affinity (conservation of primer sites) observed in species belonging to different families of brown algae, respect to that observed among species of the same genus in the red algae, is surprising. Such a result is strikingly counterintuitive when observing the morphological disparity among the Laminariales, respect to the similarity observed in the Gracilariales. It also reminds one of an earlier discussion by Gary Saunders about “When a family is not a family”.  相似文献   

7.
8.
Introductions of non‐native macroalgae and the subsequent displacement of native species are globally becoming more frequent. The algal genera Undaria, Sargassum, Caulerpa and Codium have been identified as being particularly invasive. An overview on the present knowledge on macroalgal introductions in the Australian region is presented and options for management are discussed, mostly using examples from studies on the introduced Japanese kelp, Undaria pinnatifida. Undaria pinnatifida was first detected in Tasmania, Australia in the early 1980's. Since then, its range has expanded despite eradication efforts. Long distance jumps appear to be the major mode of spread of U. pinnatifida in Tasmania. Studies are underway to distinguish the relative importance of spore dispersal, drift of adult plants and anthropogenic factors in spreading this invasive kelp. Although information on the real impacts of U. pinnatifida and other introduced macroalgae is sparse, the development of management and control strategies is of vital importance to prevent further spread and translocation of these “pest” species.  相似文献   

9.
10.
A new genus, Pseudolessonia, is proposed for the kelp Lessonia laminarioides Postels et Ruprecht (Laminariales, Phaeophyceae), which occurs on the northwest side of the Sea of Okhotsk, in the northwest Pacific Ocean. Pseudolessonia is monotypic and differs from Lessonia in its short primary stipes and its corrugated, unilaterally arranged blades with entire margins. This species is transferred on the basis of morphology and plastid gene sequence comparisons. We determined psaA and rbcL gene sequences from 17 taxa of Pseudolessonia, Lessonia, and putative relatives. Analyses of individual and combined data sets resulted in congruent trees showing a clear separation of Pseudolessonia laminarioides from Lessonia, but suggesting its sister relationships with the clade of Nereocystis, Macrocystis, Pelagophycus, and Postelsia in the North Pacific Ocean. On the other hand, Lessonia species from the South Pacific Ocean formed a strongly supported clade. The results indicate that the basal splitting of the blade, which has been considered a diagnostic character for the family Lessoniaceae, is a result of convergent evolution.  相似文献   

11.
Many macroalgae exhibit considerable intraspecific morphological variation, but whether such variation reflects phenotypic plasticity or underlying genetic differences is often poorly understood. We quantified both morphological and genetic variation of 96 plants from seven field sites across eastern South Island, New Zealand, to assess genetic differences between morphotypes of the southern bull kelp Durvillaea antarctica (Cham.) Har. Consistent DNA sequence differentiation across mitochondrial, plastid, and nuclear loci was correlated with two broadly sympatric morphotypes: “cape” and “thonged.” These ecologically, morphologically, and genetically distinct bull‐kelp lineages were previously considered to be environmentally determined phenotypes with no underlying genetic basis. Interestingly, the sheltered “cape” lineage appears essentially genetically uniform across its South Island range, whereas the exposed “thonged” lineage exhibits marked phylogeographic structure across its range. Results suggest that D. antarctica in New Zealand comprises two reproductively isolated species.  相似文献   

12.
A comprehensive tribal‐level classification for the world’s subfamilies of Hesperiidae, the skipper butterflies, is proposed for the first time. Phylogenetic relationships between tribes and subfamilies are inferred using DNA sequence data from three gene regions (cytochrome oxidase subunit I‐subunit II, elongation factor‐1α and wingless). Monophyly of the family is strongly supported, as are some of the traditionally recognized subfamilies, with the following relationships: (Coeliadinae + (“Pyrginae” + (Heteropterinae + (Trapezitinae + Hesperiinae)))). The subfamily Pyrginae of contemporary authors was recovered as a paraphyletic grade of taxa. The formerly recognized subfamily Pyrrhopyginae, although monophyletic, is downgraded to a tribe of the “Pyrginae”. The former subfamily Megathyminae is an infra‐tribal group of the Hesperiinae. The Australian endemic Euschemon rafflesia is a hesperiid, possibly related to “Pyrginae” (Eudamini). Most of the traditionally recognized groups and subgroups of genera currently employed to partition the subfamilies of the Hesperiidae are not monophyletic. We recognize eight pyrgine and six hesperiine tribes, including the new tribe Moncini. © The Willi Hennig Society 2008.  相似文献   

13.
Routine DNA barcoding of the Haida Gwaii seaweed flora revealed “endemic species” attributed initially to this region's past as a glacial refugium. However, subsequent barcode records from central California rapidly eroded this list leaving species characterized by disjunct distributions (DD) between California and Haida Gwaii. This observation prompted a more detailed look at species for California and British Columbia and revealed that 33 of 180 DNA‐barcoded genetic groups in common between these regions (~18%) predominantly displayed DD between California and northern British Columbia. A previous discovery that a red abalone shell found in Haida Gwaii (far north of its range) had a float‐bearing kelp (Nereocystis luetkeana) holdfast attached to it prompted a closer consideration of the COI‐5P barcode data in support of a “kelp conveyor hypothesis.” The hypothesis posits that there has been a net migration of Californian species to northern British Columbia the vector being species growing on substrata carried along with kelp rafts on the winter Davidson Current.  相似文献   

14.
15.
The spread of non-indigenous and invasive seaweeds has increased worldwide, and their potential effects on native seaweeds have raised concern. Undaria pinnatifida is considered among the most prolific non-indigenous species. This species has expanded rapidly in the Northeast Pacific, overlapping with native communities such as the iconic giant kelp forests (Macrocystis pyrifera). Canopy shading by giant kelp has been argued to be a limiting factor for the presence of U. pinnatifida in the understory, thus its invasiveness capacity. However, its physiological plasticity under light limitation remains unclear. In this work, we compared the physiology and growth of juvenile U. pinnatifida and M. pyrifera sporophytes transplanted to the understory of a giant kelp forest, to juveniles growing outside of the forest. Extreme low light availability compared to that outside (~0.2 and ~4.4 mol photon ⋅ m−2 ⋅ d−1, respectively) likely caused a “metabolic energy crisis” in U. pinnatifida, thus restricting its photoacclimation plasticity and nitrogen acquisition, ultimately reducing its growth. Despite M. pyrifera juveniles showing photoacclimatory responses (e.g., increases in photosynthetic efficiency and lower compensation irradiance, Ec), their physiological/vegetative status deteriorated similarly to U. pinnatifida, which explains the low recruitment inside the forest. Generally, our results revealed the ecophysiological basis behind the limited growth and survival of juvenile U. pinnatifida sporophytes in the understory.  相似文献   

16.
Studies of quantitative trait loci based on genetic linkage maps require the establishment of a mapping population. Permanent mapping populations are more ideal than temporary ones because they can be used repeatedly. However, there has been no reported permanent sporophyte population of economically important kelp species. Based on the characteristics of the kelp life cycle, we proposed a method to establish, and then constructed experimentally, an “immortalized F2” (IF2) population of Undaria pinnatifida. Doubled-haploid “female” and “male” sporophytes were obtained through the parthenogenesis of a female gametophyte clone and the selfing of a “monoicous” gametophyte clone (originally male), respectively, and they were used as the parents. The F1 hybrid line was generated by crossing the female and male gametophytes derived from the respective female and male parents. Full-sibling F2 gametophyte clones, consisting of 260 females and 260 males, were established from an F1 hybrid sporophyte. Thirty-five females and 35 males were randomly selected and paired to give rise to an IF2 population containing 35 crossing lines. A parentage analysis using 10 microsatellite markers confirmed the accuracy of the IF2 population and indicated the feasibility of this method. This proposed method may be adapted for use in other kelp species, and thus, it will be useful for genetic studies of kelp.  相似文献   

17.
Phylogeny of birch mice is estimated using sequences of ten nuclear genes and one mitochondrial gene. Based on the results of tree reconstructions and molecular dating, five major lineages are recognized: “tianschanica,” “concolor,” “caudata,” “betulina,” and “caucasica.” It is established that the three latter lineages constitute a clade and that the long‐tailed birch mouse Sicista caudata is the sister group of the “caucasica” lineage. The “tianschanica” lineage is placed as the sister branch to all other species, however, with insufficient support. The cytochrome b tree is generally concordant with the nuclear topology. The molecular clock results suggest that the radiation among the main lineages occurred in the Late Miocene–Early Pliocene (6.0–4.7 Mya). The correspondence between molecular dating and the fossil record is discussed. Based on nuclear data, a high level of divergence between cryptic species in the “tianschanica” lineage is confirmed. Mitochondrial and nuclear data suggest the existence of a potential cryptic species within Sicista strandi.  相似文献   

18.
The use of primers designed originally to amplify DNA for one species in a different one can save time and resources, particularly for microsatellite loci. Microsatellite amplification improvements across two kelp families are reported, where loci originally described in Laminaria digitata (Laminariaceae) were tested in Lessonia nigrescens) was observed in two localities affected by massive mortality events. Nei’s distances among five populations presented similar patterns to those of 30 multilocus dominant loci (RAPD) evaluated in the same localities. Although some success might be achieved in cross-species microsatellite amplifications, the strong mutations detected between these two Laminarian families suggests that better results of cross-amplifications should be expected at much lower taxonomic levels. Thus, although more expensive, construction of new gene libraries is strongly recommended.  相似文献   

19.
The deep‐water macroalgal assemblage was described at 14 sites off the central California coast during 1999 and 2000 from SCUBA and remotely operated vehicle sampling. The stipitate kelp Pleurophycus gardneri Setchell & Gardner, previously thought to be rare in the region, was abundant from 30 to 45 m, forming kelp beds below the well‐known giant kelp forests. Macroalgae typically formed three broadly overlapping zones usually characterized by one or a few visually dominant taxa: 1) the upper “Pleurophycus zone” (30–45 m) of stipitate kelps and Desmarestia spp. with a high percent cover of corallines, low cover of uncalcified red algae, and rare green algae; 2) a middle “Maripelta zone” (40–55 m) with other uncalcified red algae and infrequent corallines and green algae; and 3) a zone (55–75 m) of infrequent patches of nongeniculate coralline algae. The green alga Palmophyllum umbracola Nelson & Ryan, not previously reported from the Northeast Pacific, was found over the entire geographical range sampled from 35 to 54 m. Year‐round profiles of water column irradiance revealed unexpectedly clear water with an average K0 of 0.106·m ? 1 Received 18 January 2002. Accepted 16 December 2002. . The low percent surface irradiance found at the average lower macroalgal depth limits in this study (0.56% for brown algae, 0.12% for uncalcified red algae, and 0.01% for nongeniculate coralline algae) and lack of large grazers suggest that light controls the lower distributional limits. The ubiquitous distribution, perennial nature, and similar lower depth limits of deep‐water macroalgal assemblages at all sites suggest that these assemblages are a common persistent part of the benthic biota in this region.  相似文献   

20.
Piscine novirhabdovirus = Viral Hemorrhagic Septicemia Virus (VHSV) first appeared in the Laurentian Great Lakes with large outbreaks from 2005 to 2006, as a new and novel RNA rhabdovirus subgenogroup (IVb) that killed >30 fish species. Interlude periods punctuated smaller more localized outbreaks in 2007, 2010, and 2017, although some fishes tested positive in the intervals. There have not been reports of outbreaks or positives from 2018, 2019, or 2020. Here, we employ a combined population genetics and phylogenetic approach to evaluate spatial and temporal evolutionary trajectory on its G‐gene sequence variation, in comparison with whole‐genome sequences (11,083 bp) from a subset of 44 individual isolates (including 40 newly sequenced ones). Our results show that IVb (N = 184 individual fish isolates) diversified into 36 G‐gene haplotypes from 2003 to 2017, stemming from two originals (“a” and “b”). G‐gene haplotypes “a” and “b” differed by just one synonymous single‐nucleotide polymorphism (SNP) substitution, remained the most abundant until 2011, then disappeared. Group “a” descendants (14 haplotypes) remained most prevalent in the Upper and Central Great Lakes, with eight (51%) having nonsynonymous substitutions. Group “b” descendants primarily have occurred in the Lower Great Lakes, including 22 haplotypes, of which 15 (68%) contained nonsynonymous changes. Evolutionary patterns of the whole‐genome sequences (which had 34 haplotypes among 44 isolates) appear congruent with those from the G‐gene. Virus populations significantly diverged among the Upper, Central, and Lower Great Lakes, diversifying over time. Spatial divergence was apparent in the overall patterns of nucleotide substitutions, while amino acid changes increased temporally. VHSV‐IVb thus significantly differentiated across its less than two decades in the Great Lakes, accompanied by declining outbreaks and virulence. Continuing diversification likely allowed the virus to persist at low levels in resident fish populations, and may facilitate its potential for further and future spread to new habitats and nonacclimated hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号