首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite extensive work on the genetic diversity of reef invertebrate‐dinoflagellate symbioses on the Great Barrier Reef (GBR; Australia), large information gaps exist from northern and inshore regions. Therefore, a broad survey was done comparing the community of inshore, mid‐shelf and outer reefs at the latitude of Lizard Island. Symbiodinium (Freudenthal) diversity was characterized using denaturing gradient gel electrophoresis fingerprinting and sequencing of the ITS2 region of the ribosomal DNA. Thirty‐nine distinct Symbiodinium types were identified from four subgeneric clades (B, C, D, and G). Several Symbiodinium types originally characterized from the Indian Ocean were discovered as well as eight novel types (C1kk, C1LL, C3nn, C26b, C161a, C162, C165, C166). Multivariate analyses on the Symbiodinium species diversity data showed a strong link with host identity, consistent with previous findings. Of the four environmental variables tested, mean austral winter sea surface temperature (SST) influenced Symbiodinium distribution across shelves most significantly. A similar result was found when the analysis was performed on Symbiodinium diversity data of genera with an open symbiont transmission mode separately with chl a and PAR explaining additional variation. This study underscores the importance of SST and water quality related variables as factors driving Symbiodinium distribution on cross‐shelf scales. Furthermore, this study expands our knowledge on Symbiodinium species diversity, ecological partitioning (including host‐specificity) and geographic ranges across the GBR. The accelerating rate of environmental change experienced by coral reef ecosystems emphasizes the need to comprehend the full complexity of cnidarian symbioses, including the biotic and abiotic factors that shape their current distributions.  相似文献   

2.
The resilience of Symbiodinium harboured by corals is dependent on the genetic diversity and extent of connectivity among reef populations. This study presents genetic analyses of Great Barrier Reef (GBR) populations of clade C Symbiodinium hosted by the alcyonacean coral, Sinularia flexibilis. Allelic variation at four newly developed microsatellite loci demonstrated that Symbiodinium populations are genetically differentiated at all spatial scales from 16 to 1,360 km (pairwise ΦST = 0.01–0.47, mean = 0.22); the only exception being two neighbouring populations in the Cairns region separated by 17 km. This indicates that gene flow is restricted for Symbiodinium C hosted by S. flexibilis on the GBR. Patterns of population structure reflect longshore circulation patterns and limited cross-shelf mixing, suggesting that passive transport by currents is the primary mechanism of dispersal in Symbiodinium types that are acquired horizontally. There was no correlation between the genetic structure of Symbiodinium populations and their host S. flexibilis, most likely because different factors affect the dispersal and recruitment of each partner in the symbiosis. The genetic diversity of these Symbiodinium reef populations is on average 1.5 times lower on inshore reefs than on offshore reefs. Lower inshore diversity may reflect the impact of recent bleaching events on Sinularia assemblages, which have been more widespread and severe on inshore reefs, but may also have been shaped by historical sea level fluctuations or recent migration patterns. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Communicated by Biology Editor Dr. Ruth Gates.  相似文献   

3.
Large‐scale environmental disturbances may impact both partners in coral host–Symbiodinium systems. Elucidation of the assembly patterns in such complex and interdependent communities may enable better prediction of environmental impacts across coral reef ecosystems. In this study, we investigated how the community composition and diversity of dinoflagellate symbionts in the genus Symbiodinium were distributed among 12 host species from six taxonomic orders (Actinaria, Alcyonacea, Miliolida, Porifera, Rhizostoma, Scleractinia) and in the reef water and sediments at Lizard Island, Great Barrier Reef before the 3rd Global Coral Bleaching Event. 454 pyrosequencing of the ITS2 region of Symbiodinium yielded 83 operational taxonomic units (OTUs) at a 97% similarity cut‐off. Approximately half of the Symbiodinium OTUs from reef water or sediments were also present in symbio. OTUs belonged to six clades (A‐D, F‐G), but community structure was uneven. The two most abundant OTUs (100% matches to types C1 and A3) comprised 91% of reads and OTU C1 was shared by all species. However, sequence‐based analysis of these dominant OTUs revealed host species specificity, suggesting that genetic similarity cut‐offs of Symbiodinium ITS2 data sets need careful evaluation. Of the less abundant OTUs, roughly half occurred at only one site or in one species and the background Symbiodinium communities were distinct between individual samples. We conclude that sampling multiple host taxa with differing life history traits will be critical to fully understand the symbiont diversity of a given system and to predict coral ecosystem responses to environmental change and disturbance considering the differential stress response of the taxa within.  相似文献   

4.
Connectivity underpins the persistence and recovery of marine ecosystems. The Great Barrier Reef (GBR) is the world's largest coral reef ecosystem and managed by an extensive network of no‐take zones; however, information about connectivity was not available to optimize the network's configuration. We use multivariate analyses, Bayesian clustering algorithms and assignment tests of the largest population genetic data set for any organism on the GBR to date (Acropora tenuis, >2500 colonies; >50 reefs, genotyped for ten microsatellite loci) to demonstrate highly congruent patterns of connectivity between this common broadcast spawning reef‐building coral and its congener Acropora millepora (~950 colonies; 20 reefs, genotyped for 12 microsatellite loci). For both species, there is a genetic divide at around 19°S latitude, most probably reflecting allopatric differentiation during the Pleistocene. GBR reefs north of 19°S are essentially panmictic whereas southern reefs are genetically distinct with higher levels of genetic diversity and population structure, most notably genetic subdivision between inshore and offshore reefs south of 19°S. These broadly congruent patterns of higher genetic diversities found on southern GBR reefs most likely represent the accumulation of alleles via the southward flowing East Australia Current. In addition, signatures of genetic admixture between the Coral Sea and outer‐shelf reefs in the northern, central and southern GBR provide evidence of recent gene flow. Our connectivity results are consistent with predictions from recently published larval dispersal models for broadcast spawning corals on the GBR, thereby providing robust connectivity information about the dominant reef‐building genus Acropora for coral reef managers.  相似文献   

5.
Climate change‐driven stressors threaten the persistence of coral reefs worldwide. Symbiotic relationships between scleractinian corals and photosynthetic endosymbionts (genus Symbiodinium) are the foundation of reef ecosystems, and these associations are differentially impacted by stress. Here, we couple empirical data from the coral reefs of Moorea, French Polynesia, and a network theoretic modeling approach to evaluate how patterns in coral‐Symbiodinium associations influence community stability under climate change. To introduce the effect of climate perturbations, we simulate local ‘extinctions’ that represent either the loss of coral species or the ability to engage in symbiotic interactions. Community stability is measured by determining the duration and number of species that persist through the simulated extinctions. Our results suggest that four factors greatly increase coral‐Symbiodinium community stability in response to global changes: (i) the survival of generalist hosts and symbionts maximizes potential symbiotic unions; (ii) elevated symbiont diversity provides redundant or complementary symbiotic functions; (iii) compatible symbiotic assemblages create the potential for local recolonization; and (iv) the persistence of certain traits associate with symbiotic diversity and redundancy. Symbiodinium may facilitate coral persistence through novel environmental regimes, but this capacity is mediated by symbiotic specificity, association patterns, and the functional performance of the symbionts. Our model‐based approach identifies general trends and testable hypotheses in coral‐Symbiodinium community responses. Future studies should consider similar methods when community size and/or environmental complexity preclude experimental approaches.  相似文献   

6.
Studying the mechanisms that enable coral populations to inhabit spatially varying thermal environments can help evaluate how they will respond in time to the effects of global climate change and elucidate the evolutionary forces that enable or constrain adaptation. Inshore reefs in the Florida Keys experience higher temperatures than offshore reefs for prolonged periods during the summer. We conducted a common garden experiment with heat stress as our selective agent to test for local thermal adaptation in corals from inshore and offshore reefs. We show that inshore corals are more tolerant of a 6‐week temperature stress than offshore corals. Compared with inshore corals, offshore corals in the 31 °C treatment showed significantly elevated bleaching levels concomitant with a tendency towards reduced growth. In addition, dinoflagellate symbionts (Symbiodinium sp.) of offshore corals exhibited reduced photosynthetic efficiency. We did not detect differences in the frequencies of major (>5%) haplotypes comprising Symbiodinium communities hosted by inshore and offshore corals, nor did we observe frequency shifts (‘shuffling’) in response to thermal stress. Instead, coral host populations showed significant genetic divergence between inshore and offshore reefs, suggesting that in Porites astreoides, the coral host might play a prominent role in holobiont thermotolerance. Our results demonstrate that coral populations inhabiting reefs <10‐km apart can exhibit substantial differences in their physiological response to thermal stress, which could impact their population dynamics under climate change.  相似文献   

7.
Identifying which factors lead to coral bleaching resistance is a priority given the global decline of coral reefs with ocean warming. During the second year of back‐to‐back bleaching events in the Florida Keys in 2014 and 2015, we characterized key environmental and biological factors associated with bleaching resilience in the threatened reef‐building coral Orbicella faveolata. Ten reefs (five inshore, five offshore, 179 corals total) were sampled during bleaching (September 2015) and recovery (May 2016). Corals were genotyped with 2bRAD and profiled for algal symbiont abundance and type. O. faveolata at the inshore sites, despite higher temperatures, demonstrated significantly higher bleaching resistance and better recovery compared to offshore. The thermotolerant Durusdinium trenchii (formerly Symbiondinium trenchii) was the dominant endosymbiont type region‐wide during initial (78.0% of corals sampled) and final (77.2%) sampling; >90% of the nonbleached corals were dominated by D. trenchii. 2bRAD host genotyping found no genetic structure among reefs, but inshore sites showed a high level of clonality. While none of the measured environmental parameters were correlated with bleaching, 71% of variation in bleaching resistance and 73% of variation in the proportion of D. trenchii was attributable to differences between genets, highlighting the leading role of genetics in shaping natural bleaching patterns. Notably, D. trenchii was rarely dominant in O. faveolata from the Florida Keys in previous studies, even during bleaching. The region‐wide high abundance of D. trenchii was likely driven by repeated bleaching associated with the two warmest years on record for the Florida Keys (2014 and 2015). On inshore reefs in the Upper Florida Keys, O. faveolata was most abundant, had the highest bleaching resistance, and contained the most corals dominated by D. trenchii, illustrating a causal link between heat tolerance and ecosystem resilience with global change.  相似文献   

8.
The mutualistic symbioses between reef‐building corals and micro‐algae form the basis of coral reef ecosystems, yet recent environmental changes threaten their survival. Diversity in host‐symbiont pairings on the sub‐species level could be an unrecognized source of functional variation in response to stress. The Caribbean elkhorn coral, Acropora palmata, associates predominantly with one symbiont species (Symbiodiniumfitti’), facilitating investigations of individual‐level (genotype) interactions. Individual genotypes of both host and symbiont were resolved across the entire species’ range. Most colonies of a particular animal genotype were dominated by one symbiont genotype (or strain) that may persist in the host for decades or more. While Symbiodinium are primarily clonal, the occurrence of recombinant genotypes indicates sexual recombination is the source of this genetic variation, and some evidence suggests this happens within the host. When these data are examined at spatial scales spanning the entire distribution of A. palmata, gene flow among animal populations was an order of magnitude greater than among populations of the symbiont. This suggests that independent micro‐evolutionary processes created dissimilar population genetic structures between host and symbiont. The lower effective dispersal exhibited by the dinoflagellate raises questions regarding the extent to which populations of host and symbiont can co‐evolve during times of rapid and substantial climate change. However, these findings also support a growing body of evidence, suggesting that genotype‐by‐genotype interactions may provide significant physiological variation, influencing the adaptive potential of symbiotic reef corals to severe selection.  相似文献   

9.
Bursts in species diversification are well documented among animals and plants, yet few studies have assessed recent adaptive radiations of eukaryotic microbes. Consequently, we examined the radiation of the most ecologically dominant group of endosymbiotic dinoflagellates found in reef‐building corals, Symbiodinium Clade C, using nuclear ribosomal (ITS2), chloroplast (psbAncr), and multilocus microsatellite genotyping. Through a hierarchical analysis of high‐resolution genetic data, we assessed whether ecologically distinct Symbiodinium, differentiated by seemingly equivocal rDNA sequence differences, are independent species lineages. We also considered the role of host specificity in Symbiodinium speciation and the correspondence between endosymbiont diversification and Caribbean paleo‐history. According to phylogenetic, biological, and ecological species concepts, Symbiodinium Clade C comprises many distinct species. Although regional factors contributed to population‐genetic structuring of these lineages, Symbiodinium diversification was mainly driven by host specialization. By combining patterns of the endosymbiont's host specificity, water depth distribution, and phylogeography with paleo‐historical signals of climate change, we inferred that present‐day species diversity on Atlantic coral reefs stemmed mostly from a post‐Miocene adaptive radiation. Host‐generalist progenitors spread, specialized, and diversified during the ensuing epochs of prolonged global cooling and change in reef‐faunal assemblages. Our evolutionary reconstruction thus suggests that Symbiodinium undergoes “boom and bust” phases in diversification and extinction during major climate shifts.  相似文献   

10.
The biogenic structures of stationary organisms can be effective recorders of environmental fluctuations. These proxy records of environmental change are preserved as geochemical signals in the carbonate skeletons of scleractinian corals and are useful for reconstructions of temporal and spatial fluctuations in the physical and chemical environments of coral reef ecosystems, including The Great Barrier Reef (GBR). We compared multi-year monitoring of water temperature and dissolved elements with analyses of chemical proxies recorded in Porites coral skeletons to identify the divergent mechanisms driving environmental variation at inshore versus offshore reefs. At inshore reefs, water Ba/Ca increased with the onset of monsoonal rains each year, indicating a dominant control of flooding on inshore ambient chemistry. Inshore multi-decadal records of coral Ba/Ca were also highly periodic in response to flood-driven pulses of terrigenous material. In contrast, an offshore reef at the edge of the continental shelf was subject to annual upwelling of waters that were presumed to be richer in Ba during summer months. Regular pulses of deep cold water were delivered to the reef as indicated by in situ temperature loggers and coral Ba/Ca. Our results indicate that although much of the GBR is subject to periodic environmental fluctuations, the mechanisms driving variation depend on proximity to the coast. Inshore reefs are primarily influenced by variable freshwater delivery and terrigenous erosion of catchments, while offshore reefs are dominated by seasonal and inter-annual variations in oceanographic conditions that influence the propensity for upwelling. The careful choice of sites can help distinguish between the various factors that promote Ba uptake in corals and therefore increase the utility of corals as monitors of spatial and temporal variation in environmental conditions.  相似文献   

11.
12.
13.
The extent to which fish communities are structured by spatial variability in coral reef habitats versus stochastic processes (such as larval supply) is very important in predicting responses to sustained and ongoing habitat degradation. In this study, butterflyfish and benthic communities were surveyed annually over 15 years on 47 reefs (spanning 12° of latitude) of the Great Barrier Reef (GBR). Spatial autocorrelation in the structure of butterflyfish communities versus key differences in reef habitats was investigated to assess the extent to which the structure of these fish communities is influenced by habitat conditions. Benthic communities on each of the 47 reefs were broadly categorised as either: 1. Poritidae/Alcyoniidae, 2. mixed taxa, 3. soft coral or 4. Acropora-dominated habitats. These habitat types most reflected increases in water clarity and wave exposure, moving across the GBR shelf from coastal to outer-shelf environments. In turn, each habitat type also supported very distinct butterflyfish communities. Hard coral feeders were always the dominant butterflyfish species in each community type. However, the numerically dominant species changed according to habitat type, representing spatial replacement of species across the shelf. This study reveals clear and consistent differences in the structure of fish communities among reefs associated with marked differences in habitat structure.  相似文献   

14.
Coral reef ecosystems depend on symbiosis between dinoflagellates of the genus Symbiodinium Freudenthal and their various hosts. The physiological characteristics associated with a particular lineage or species of Symbiodinium can determine a host's susceptibility to harmful bleaching. Therefore, the threat posed by global climate change on a host may be reduced if it can switch or shuffle its dominant algal symbiont type. An important prerequisite to this potential to switch or shuffle is the ability to host multiple alternative dominant symbiont genotypes. To examine the distribution of this trait, we review reports of mixed Symbiodinium infections in corals and nonscleractinian hosts from a phylogenetic perspective. Hosts showing evidence of mixed infection are broadly distributed across the most deeply divergent host lineages, including foraminifera, mollusks, sponges, and cnidarians. The occurrence of mixed infections is also broadly distributed across most clades of scleractinian corals. Individual colonies of certain well‐studied cosmopolitan coral genera, such as Acropora, Montastraea, and Pocillopora, yield many reports of mixed infection, while other genera, such as Porites, do not. We further discuss mixed Symbiodinium infections in the context of evolutionary ecology theory. Selection pressures that affect the prevalence of mixed infection may be exerted by variation in host environment, host ontogeny, symbiont transmission strategy, host regulation of symbiont populations, availability of free‐living symbiont lineages, competition between symbiont lineages, and niche partitioning of the internal host environment.  相似文献   

15.
Shallow water anthozoans, the major builders of modern coral reefs, enhance their metabolic and calcification rates with algal symbionts. Controversy exists over whether these anthozoan–algae associations are flexible over the lifetimes of individual hosts, promoting acclimative plasticity, or are closely linked, such that hosts and symbionts co‐evolve across generations. Given the diversity of algal symbionts and the morphological plasticity of many host species, cryptic variation within either partner could potentially confound studies of anthozoan‐algal associations. Here, we used ribosomal, organelle and nuclear sequences, along with microsatellite variation, to study the relationship between lineages of a common Caribbean gorgonian and its algal symbionts. The gorgonian Eunicea flexuosa is a broadcast spawner, composed of two recently diverged, genetically distinct lineages largely segregated by depth. We sampled colonies of the two lineages across depth gradients at three Caribbean locations. We find that each host lineage is associated with a unique Symbiodinium B1/184 phylotype. This relationship between host and symbiont is maintained when host colonies are reciprocally transplanted, although cases of within phylotype switching were also observed. Even when the phylotypes of both partners are present at intermediate depths, the specificity between host and symbiont lineages remained absolute. Unrecognized cryptic diversity may mask host‐symbiont specificity and change the inference of evolutionary processes in mutualistic associations. Symbiotic specificity thus likely contributes to the ecological divergence of the two partners, generating species diversity within coral reefs.  相似文献   

16.

Background

The endosymbiotic dinoflagellates (genus Symbiodinium) within coral reef invertebrates are critical to the survival of the holobiont. The genetic variability of Symbiodinium may contribute to the tolerance of the symbiotic association to elevated sea surface temperatures (SST). To assess the importance of factors such as the local environment, host identity and biogeography in driving Symbiodinium distributions on reef-wide scales, data from studies on reef invertebrate-Symbiodinium associations from the Great Barrier Reef (GBR) were compiled.

Methodology/Principal Findings

The resulting database consisted of 3717 entries from 26 studies. It was used to explore ecological patterns such as host-specificity and environmental drivers structuring community complexity using a multi-scalar approach. The data was analyzed in several ways: (i) frequently sampled host species were analyzed independently to investigate the influence of the environment on symbiont distributions, thereby excluding the influence of host specificity, (ii) host species distributions across sites were added as an environmental variable to determine the contribution of host identity on symbiont distribution, and (iii) data were pooled based on clade (broad genetic groups dividing the genus Symbiodinium) to investigate factors driving Symbiodinium distributions using lower taxonomic resolution. The results indicated that host species identity plays a dominant role in determining the distribution of Symbiodinium and environmental variables shape distributions on a host species-specific level. SST derived variables (especially SSTstdev) most often contributed to the selection of the best model. Clade level comparisons decreased the power of the predictive model indicating that it fails to incorporate the main drivers behind Symbiodinium distributions.

Conclusions/Significance

Including the influence of different host species on Symbiodinium distributional patterns improves our understanding of the drivers behind the complexity of Symbiodinium-invertebrate symbioses. This will increase our ability to generate realistic models estimating the risk reefs are exposed to and their resilience in response to a changing climate.  相似文献   

17.
Population genetic markers are increasingly being used to study the diversity, ecology and evolution of Symbiodinium, a group of eukaryotic microbes that are often mutualistic with reef‐building corals. Population genetic markers can resolve individual clones, or strains, from samples of host tissue; however, samples may comprise different species that may confound interpretations of gene flow and genetic structure. Here, we propose a method for resolving species from population genetic data using tests for genetic recombination. Assigning individuals to genetically recombining populations prior to further analyses avoids critical errors in the interpretation of gene flow and dispersal. To demonstrate the effectiveness of the approach, we first apply this method to a simulated data set. We then use the method to resolve two species of host generalist Symbiodinium that commonly co‐occur in reef‐building corals collected from Indo‐West Pacific reefs. We demonstrate that the method is robust even when some hosts contain genotypes from two distinct species. Finally, we examine population genetic data sets from two recently published papers in Molecular Ecology. We show that each strongly supports a two species interpretation, which significantly changes the original conclusions presented in these studies. When combined with available phylogenetic and ecological evidence, the use of population genetic data offers a robust method for unambiguously delimiting morphologically cryptic species.  相似文献   

18.
Spatially intimate symbioses, such as those between scleractinian corals and unicellular algae belonging to the genus Symbiodinium, can potentially adapt to changes in the environment by altering the taxonomic composition of their endosymbiont communities. We quantified the spatial relationship between the cumulative frequency of thermal stress anomalies (TSAs) and the taxonomic composition of Symbiodinium in the corals Montipora capitata, Porites lobata, and Porites compressa across the Hawaiian archipelago. Specifically, we investigated whether thermally tolerant clade D Symbiodinium was in greater abundance in corals from sites with high frequencies of TSAs. We recovered 2305 Symbiodinium ITS2 sequences from 242 coral colonies in lagoonal reef habitats at Pearl and Hermes Atoll, French Frigate Shoals, and Kaneohe Bay, Oahu in 2007. Sequences were grouped into 26 operational taxonomic units (OTUs) with 12 OTUs associated with Montipora and 21 with Porites. Both coral genera associated with Symbiodinium in clade C, and these co‐occurred with clade D in M. capitata and clade G in P. lobata. The latter represents the first report of clade G Symbiodinium in P. lobata. In M. capitata (but not Porites spp.), there was a significant correlation between the presence of Symbiodinium in clade D and a thermal history characterized by high cumulative frequency of TSAs. The endogenous community composition of Symbiodinium and an association with clade D symbionts after long‐term thermal disturbance appear strongly dependent on the taxa of the coral host.  相似文献   

19.
The dinoflagellate photosymbiont Symbiodinium plays a fundamental role in defining the physiological tolerances of coral holobionts, but little is known about the dynamics of these endosymbiotic populations on coral reefs. Sparse data indicate that Symbiodinium populations show limited spatial connectivity; however, no studies have investigated temporal dynamics for in hospite Symbiodinium populations following significant mortality and recruitment events in coral populations. We investigated the combined influences of spatial isolation and disturbance on the population dynamics of the generalist Symbiodinium type C2 (ITS1 rDNA) hosted by the scleractinian coral Acropora millepora in the central Great Barrier Reef. Using eight microsatellite markers, we genotyped Symbiodinium in a total of 401 coral colonies, which were sampled from seven sites across a 12‐year period including during flood plume–induced coral bleaching. Genetic differentiation of Symbiodinium was greatest within sites, explaining 70–86% of the total genetic variation. An additional 9–27% of variation was explained by significant differentiation of populations among sites separated by 0.4–13 km, which is consistent with low levels of dispersal via water movement and historical disturbance regimes. Sampling year accounted for 6–7% of total genetic variation and was related to significant coral mortality following severe bleaching in 1998 and a cyclone in 2006. Only 3% of the total genetic variation was related to coral bleaching status, reflecting generally small (8%) reductions in allelic diversity within bleached corals. This reduction probably reflected a loss of genotypes in hospite during bleaching, although no site‐wide changes in genetic diversity were observed. Combined, our results indicate the importance of disturbance regimes acting together with limited oceanographic transport to determine the genetic composition of Symbiodinium types within reefs.  相似文献   

20.
Ecosystems at the land–sea interface are vulnerable to rising sea level. Intertidal habitats must maintain their surface elevations with respect to sea level to persist via vertical growth or landward retreat, but projected rates of sea‐level rise may exceed the accretion rates of many biogenic habitats. While considerable attention is focused on climate change over centennial timescales, relative sea level also fluctuates dramatically (10–30 cm) over month‐to‐year timescales due to interacting oceanic and atmospheric processes. To assess the response of oyster‐reef (Crassostrea virginica) growth to interannual variations in mean sea level (MSL) and improve long‐term forecasts of reef response to rising seas, we monitored the morphology of constructed and natural intertidal reefs over 5 years using terrestrial lidar. Timing of reef scans created distinct periods of high and low relative water level for decade‐old reefs (n = 3) constructed in 1997 and 2000, young reefs (n = 11) constructed in 2011 and one natural reef (approximately 100 years old). Changes in surface elevation were related to MSL trends. Decade‐old reefs achieved 2 cm/year growth, which occurred along higher elevations when MSL increased. Young reefs experienced peak growth (6.7 cm/year) at a lower elevation that coincided with a drop in MSL. The natural reef exhibited considerable loss during the low MSL of the first time step but grew substantially during higher MSL through the second time step, with growth peaking (4.3 cm/year) at MSL, reoccupying the elevations previously lost. Oyster reefs appear to be in dynamic equilibrium with short‐term (month‐to‐year) fluctuations in sea level, evidencing notable resilience to future changes to sea level that surpasses other coastal biogenic habitat types. These growth patterns support the presence of a previously defined optimal growth zone that shifts correspondingly with changes in MSL, which can help guide oyster‐reef conservation and restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号