首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light drives phytoplankton photosynthesis, so phytoplankton in their living habitats must exploit variable light levels and exposure durations, depending upon seasons, latitudes, depths and mixing events. Comparative growth, physiology and biochemical compositions were explored for the small Alexnadrium minutum (˜40 μm3 biovolume) and large Alexandrium catenella (˜9300 μm3 biovolume), globally wide spread coastal toxic red tide dinoflagellates, responding to a matrix of photoperiods (Light:Dark, 8:16, 16:8 and 24:0) and growth light irradiances. Smaller A. minutum grew faster under shorter photoperiods across growth light levels, while larger A. catenella grew fastest under longer photoperiods at the lowest applied light level. Photosystem II function responded largely to the instantaneous growth light level across photoperiod lengths, while the cell biovolume-based respiration, antioxidant capacity as well as cell composition responded more to photoperiod duration than to light level. These complex photophysiological responses resolved into linear correlations between growth rate versus cellular antioxidant activity and versus dark respiration, indicating that respiration energizes cellular antioxidant systems to benefit the growth of the cells. These results show the growth responses of Alexandrium species to light levels across photoperiods vary with species, and possibly with cell size. Together with previous results this puts a note of caution on meta-analytical extrapolations of physiological responses to light intensity derived from studies applying different photoperiods to different taxa, because different taxa show differential, even opposite growth responses to photoperiods and light intensities.  相似文献   

2.
The toxicity of polychlorinated biphenyls (PCB) to the diatomThalassiosira pseudonana (formerlyCyclotella nana), grown in pure and mixed cultures, was greatest when in competition with other species. Continuous cultures were superior to batch cultures for studying competitive interactions, and PCB caused greater alteration of species composition in continuous cultures than it did in batch cultures. Natural phytoplankton communities from Vineyard Sound, maintained in continuous culture, responded to PCB stress the same as did gnotobiotic communities, withT. pseudonana showing similar responses in both communities. A PCB concentration of 0.1 μg/liter (0.1 part per billion), a level not uncommon in natural waters, did not affect algal growth in pure cultures but caused substantial disruption of continuous culture communities. The possible impact of PCB pollution on natural phytoplankton communities is discussed. Contribution No. 3181 from the Woods Hole Oceanographic Institution.  相似文献   

3.
The effects of photoperiod and light intensity on the reproduction of laboratory populations of three species in Pleuroxus from different geographic origins were determined statistically. There were highly significant differences in the numbers of gamogenetic individuals produced between the populations at different photoperiods but not at different light intensities. More males than ephippial females appeared at long-day photoperiods. Pleuroxus denticulatus stocks showed greater variation of gamogenetic response to photoperiod and geographic origin suggesting that local populations have evolved different reproductive patterns to meet the major environmental stresses of the region.  相似文献   

4.
Statolith size and growth was used to determine the influence of abiotic factors on the growth of Loligo vulgaris and Sepioteuthis australis embryos. Recently spawned egg masses collected from the field were incubated in the laboratory under different levels of light intensity, photoperiod, or short periods of low salinity (30‰). Double tetracycline staining was used to follow statolith growth. In L. vulgaris constant light conditions produced significantly slower growth in the embryonic statoliths and embryos held at summer photoperiod had slower statolith growth than those held at winter photoperiods. However once they hatched out there was no evidence that photoperiod affected statolith growth. After hatching, in all photoperiods statolith growth rates decreased in comparison with late embryonic rates. In S. australis embryos, differences between the high and medium light intensities for summer and intermediate photoperiods were found, suggesting that under summer incubation temperature, longer daylengths at medium light intensity favoured higher statolith growth for this species. In comparison to controls, slower statolith growth in S. australis embryos due to low salinity only occurred when exposed for 72 h. Comparison with previous studies indicates that temperature seems to be the main abiotic factor influencing statolith growth during early stages, however, interactions among all abiotic factors needs to be determined as well as the unknown influence of other isolated factors, e.g., oxygen concentration within the egg mass.  相似文献   

5.
6.
Diel variations of cellular optical properties were examined for cultures of the haptophyte Imantonia rotunda N. Reynolds and the diatom Thalassiosira pseudonana (Hust.) Hasle et Heimdal grown under a 14:10 light:dark (L:D) cycle and transferred from 100 μmol photons · m?2 · s?1 to higher irradiances of 250 and 500 μmol photons · m?2 · s?1. Cell volume and abundance, phytoplankton absorption coefficients, flow‐cytometric light scattering and chl fluorescence, and pigment composition were measured every 2 h over a 24 h period. Results showed that cell division was more synchronous for I. rotunda than for T. pseudonana. Several variables exhibited diel variability with an amplitude >100%, notably mean cell volume for the haptophyte and photoprotective carotenoids for both species, while optical properties such as flow‐cytometric scattering and chl a–specific phytoplankton absorption generally showed <50% diel variability. Increased irradiance induced changes in pigments (both species) and mean cell volume (for the diatom) and amplified diel variability for most variables. This increase in amplitude is larger for pigments (factor of 2 or more, notably for cellular photoprotective carotenoid content in I. rotunda and for photosynthetic pigments in T. pseudonana) than for optical properties (a factor of 1.5 for chl a–specific absorption, at 440 nm, in I. rotunda and a factor of 2 for the absorption cross‐section and the chl a–specific scattering in T. pseudonana). Consequently, diel changes in optical properties and pigmentation associated with the L:D cycle and amplified by concurrent changes in irradiance likely contribute significantly to the variability in optical properties observed in biooptical field studies.  相似文献   

7.
The diatoms Ditylum brightwellii and Nitzschia turgidula were grown in semi-continuous culture under various combinations of light intensity, temperature and daylength (photoperiod). Growth was strongly limited by light intensities below 0.03 cal/em2. min in both species. Above this intensity, light saturation of growth was rapidly approached in Nitzschia but only gradually so in Ditylum. The growth rate in continuous light was never significantly higher than with 16 hours of light plus 8 hours of dark. In Ditylum, continuous light above 0.03 cal/cm2. min caused a strong inhibition of growth at all temperatures. The chlorophyll concentration in the cells was greater the shorter the photopceriod. In cultures synchronised by different combinations of light intensity and photoperiod, cell division generally took place in the light. Synchrony was best under short photoperiods of bright light. Time courses are shown for chlorophyll synthesis and photosynthesis in synchronised cultures.  相似文献   

8.
Diatoms are one of the key phytoplankton groups in the ocean, forming vast oceanic blooms and playing a significant part in global primary production. To shed light on the role of redox metabolism in diatom's acclimation to light–dark transition and its interplay with cell fate regulation, we generated transgenic lines of the diatom Thalassiosira pseudonana that express the redox‐sensitive green fluorescent protein targeted to various subcellular organelles. We detected organelle‐specific redox patterns in response to oxidative stress, indicating compartmentalized antioxidant capacities. Monitoring the GSH redox potential (EGSH) in the chloroplast over diurnal cycles revealed distinct rhythmic patterns. Intriguingly, in the dark, cells exhibited reduced basal chloroplast EGSH but higher sensitivity to oxidative stress than cells in the light. This dark‐dependent sensitivity to oxidative stress was a result of a depleted pool of reduced glutathione which accumulated during the light period. Interestingly, reduction in the chloroplast EGSH was observed in the light phase prior to the transition to darkness, suggesting an anticipatory phase. Rapid chloroplast EGSH re‐oxidation was observed upon re‐illumination, signifying an induction of an oxidative signaling during transition to light that may regulate downstream metabolic processes. Since light–dark transitions can dictate metabolic capabilities and susceptibility to a range of environmental stress conditions, deepening our understanding of the molecular components mediating the light‐dependent redox signals may provide novel insights into cell fate regulation and its impact on oceanic bloom successions.  相似文献   

9.
Although increasing the pCO2 for diatoms will presumably down‐regulate the CO2‐concentrating mechanism (CCM) to save energy for growth, different species have been reported to respond differently to ocean acidification (OA). To better understand their growth responses to OA, we acclimated the diatoms Thalassiosira pseudonana, Phaeodactylum tricornutum, and Chaetoceros muelleri to ambient (pCO2 400 μatm, pH 8.1), carbonated (pCO2 800 μatm, pH 8.1), acidified (pCO2 400 μatm, pH 7.8), and OA (pCO2 800 μatm, pH 7.8) conditions and investigated how seawater pCO2 and pH affect their CCMs, photosynthesis, and respiration both individually and jointly. In all three diatoms, carbonation down‐regulated the CCMs, while acidification increased both the photosynthetic carbon fixation rate and the fraction of CO2 as the inorganic carbon source. The positive OA effect on photosynthetic carbon fixation was more pronounced in C. muelleri, which had a relatively lower photosynthetic affinity for CO2, than in either T. pseudonana or P. tricornutum. In response to OA, T. pseudonana increased respiration for active disposal of H+ to maintain its intracellular pH, whereas P. tricornutum and C. muelleri retained their respiration rate but lowered the intracellular pH to maintain the cross‐membrane electrochemical gradient for H+ efflux. As the net result of changes in photosynthesis and respiration, growth enhancement to OA of the three diatoms followed the order of C. muelleri > P. tricornutum > T. pseudonana. This study demonstrates that elucidating the separate and joint impacts of increased pCO2 and decreased pH aids the mechanistic understanding of OA effects on diatoms in the future, acidified oceans.  相似文献   

10.
Heterobranchus longifilis Val. 1840 larvae were reared under two light intensities, 30 lux and 915 lux, and at varying photoperiods. Results show that maximum survival (82.5 ± 6.5% respectively) at 30 lux was obtained at continuous illumination [24 h light (L)], while the minimum (65 ± 21.2%) was at the 6 h L : 18 h dark (D) treatment. Survival at 24 h D averaged 71.3 ± 6.3%, with no significant difference (P < 0.05) in growth of larvae. Maximum larval survival at 915 lux was 87.5 ± 17.7% at the 18 h L treatment. Growth was not significantly different (P < 0.05) in the treatments. Comparison of the two light intensities showed that survival was better at a photoperiod above 12 h irrespective of intensity, while growth was significantly better at the 915 lux intensity.  相似文献   

11.
The diatomsChaetoceros sp.,Skeletonema costatum andThalassiosira pseudonana were grown with different irradiances of white and of blue-green light, and with a mixture of blue-green plus 6.5 mol m–2 s–1 of white light. Exponential growth rates were higher in mixed blue for the first two, whileT. pseudonana grew faster in white light but, in all cases, mean cell division rates did not differ with increasing irradiances. Harvesting in stationary, rather than in late exponential growth phase, resulted in higher protein contents forChaetoceros sp. andS. costatum, but forT. pseudonana the highest value was in the exponential phase. The highest protein content was in blue-green light for the three species and it increased with irradiance. As to other fractions, the three strains showed different responses, related to quality and quantity, as well as to culture ages.  相似文献   

12.
Plants must switch rapidly between light harvesting and photoprotection in response to environmental fluctuations in light intensity. This switch can lead to losses in absorbed energy usage, as photoprotective energy dissipation mechanisms can take minutes to hours to fully relax. One possible way to improve photosynthesis is to engineer these energy dissipation mechanisms (measured as non‐photochemical quenching of chlorophyll a fluorescence, NPQ) to induce and relax more quickly, resulting in smaller losses under dynamic light conditions. Previous studies aimed at understanding the enzymes involved in the regulation of NPQ have relied primarily on labor‐intensive and time‐consuming generation of stable transgenic lines and mutant populations – approaches limited to organisms amenable to genetic manipulation and mapping. To enable rapid functional testing of NPQ‐related genes from diverse organisms, we performed Agrobacterium tumefaciens‐mediated transient expression assays in Nicotiana benthamiana to test if NPQ kinetics could be modified in fully expanded leaves. By expressing Arabidopsis thaliana genes known to be involved in NPQ, we confirmed the viability of this method for studying dynamic photosynthetic processes. Subsequently, we used naturally occurring variation in photosystem II subunit S, a modulator of NPQ in plants, to explore how differences in amino acid sequence affect NPQ capacity and kinetics. Finally, we functionally characterized four predicted carotenoid biosynthesis genes from the marine algae Nannochloropsis oceanica and Thalassiosira pseudonana and examined the effect of their expression on NPQ in N. benthamiana. This method offers a powerful alternative to traditional gene characterization methods by providing a fast and easy platform for assessing gene function in planta.  相似文献   

13.
The aim of this study was to determine the optimal physical process conditions for the cultivation of locally isolated strains of Nannochloropsis sp. and Tetraselmis striata to achieve maximum growth rate. It was essential to evaluate biomass production at different agitation rates, light intensities, and temperature levels. Central composite design and response surface methodology were applied to design the experiments and optimize the cultivation process for Nannochloropsis sp. and T. striata. The specific growth rate of 0.250 d?1 was obtained for Nannochloropsis sp. cells under the light intensity of 54 μmol photons · m?2 · s?1, at the agitation rate of 151 rpm in 24.5°C. The optimal physical process conditions for T. striata were obtained under the light intensity of 56 μmol photons · m?2 · s?1 in 25.5°C at the agitation rate of 151 rpm in 25.5°C, resulting in a specific growth rate of 0.226 d?1. The predicted values were justified by the verification tests. Good agreement between the predicted values and the experimental values confirmed the validity of the models for the cultivation of microalgal strains. In this article, the noteworthy result was that temperature was a dominant factor in obtaining high chl‐a content for Nannochloropsis sp., whereas the growth of T. striata strongly depended on light exposure.  相似文献   

14.
The distribution of marine phytoplankton will shift alongside changes in marine environments, leading to altered species frequencies and community composition. An understanding of the response of mixed populations to abiotic changes is required to adequately predict how environmental change may affect the future composition of phytoplankton communities. This study investigated the growth and competitive ability of two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana, along a temperature gradient (9–35°C) spanning the thermal niches of both species under both high‐nitrogen nutrient‐replete and low‐nitrogen nutrient‐limited conditions. Across this temperature gradient, the competitive outcome under both nutrient conditions at any assay temperature, and the critical temperature at which competitive advantage shifted from one species to the other, was well predicted by the temperature dependencies of the growth rates of the two species measured in monocultures. The temperature at which the competitive advantage switched from P. tricornutum to T. pseudonana increased from 18.8°C under replete conditions to 25.3°C under nutrient‐limited conditions. Thus, P. tricornutum was a better competitor over a wider temperature range in a low N environment. Being able to determine the competitive outcomes from physiological responses of single species to environmental changes has the potential to significantly improve the predictive power of phytoplankton spatial distribution and community composition models.  相似文献   

15.
Eight species of marine phytoplankton showed significant variation in the relative amount of some fatty acids (FAs) in response to variation in temperature. Large changes in relative amounts of certain FAs occurred as a result of a 15° C change in growth temperature. For example, 14:0 increased from ?4% of total FAs at 10° C to > 20% at 25° C for Chaetoceros simplex and Isochrysis aff. galbana but decreased for Phaeodactylum tricornutum. The percentage of the polyunsaturated fatty acid (PUFA) 16:ω1 was consistently greater at 10° C than at 25° C, and the converse was usually true for 16: 4ω3. Calculated over all eight species, there was a modest but significant inverse relationship between the percentage of PUFAs and temperature. Only for Thalassiosira pseudonana was the percentage of either of the PUFAs and nutritionally essential fatty acids (EFAs) also an inverse function of temperature. For T. pseudonana, the percentage of the EFA 22:6ω3 decreased linearly with increasing temperature over the range from 10 to 25° C. For three species, the ratio of unsaturated/saturated FAs was correlated with growth rate when growth rate was controlled by variation in irradiance and temperature. Only for Thalassiosira pseudonana was the ratio of unsaturated/saturated FAs also an inverse function of temperature alone.  相似文献   

16.
It is envisioned that mass algal cultivation for commercial biofuels production will entail the use of large raceway pond systems, which typically have shade‐limited photosynthetic growth within depths of 20–30 cm. The attenuation of light and spectral qualities of red, green, and blue wavelengths in a 20‐cm water column as a function of Chl‐a concentration during exponential and linear phases of growth dynamics for the marine diatom Thalassiosira pseudonana was examined under laboratory conditions. While photosynthetically available radiation (PAR) was in excess throughout the water column during the phase of exponential growth, PAR became rate limiting differently for red, green, and blue wavelengths during the phase of linear growth. The transition from exponential to linear growth occurred at 1–2 mg Chl‐a · L?1, whereby a scalar ~5 μmol photons · m?2 · s?1 at 20‐cm depth was found to occur as would be anticipated having the compensation point for where rates of photosynthesis and respiration are equal. During the phase of linear growth, red wavelengths became increasingly dominant at depth as Chl‐a concentrations increased, being contrary to the optical conditions for those natural bodies of water that forced the evolution of phytoplankton photosynthesis. It is hypothesized this dramatic difference in water column optics between natural and synthetic environments could influence a variety of biological reactions, importantly non‐photochemical quenching capacities, which could negatively impact crop yield.  相似文献   

17.
The underwater light field in blackwater environments is strongly skewed toward the red end of the electromagnetic spectrum due to blue light absorption by colored dissolved organic matter (CDOM). Exposure of phytoplankton to full spectrum irradiance occurs only when cells are mixed up to the surface. We studied the potential effects of mixing‐induced changes in spectral irradiance on photoacclimation, primary productivity and growth in cultures of the cryptophyte Rhodomonas salina and the diatom Skeletonema costatum. We found that these taxa have very different photoacclimation strategies. While S. costatum showed classical complementary chromatic adaption, R. salina showed inverse chromatic adaptation, a strategy previously unknown in the cryptophytes. Transfer of R. salina to periodic full spectrum light (PFSL) significantly enhanced growth rate (μ) by 1.8 times and primary productivity from 0.88 to 1.35 mg C · (mg Chl?1) · h?1. Overall, R. salina was less dependent on PFSL than was S. costatum, showing higher μ and net primary productivity rates. In the high‐CDOM simulation, carbon metabolism of the diatom was impaired, leading to suppression of growth rate, short‐term 14C uptake and net primary production. Upon transfer to PFSL, μ of the diatom increased by up to 3‐fold and carbon fixation from 2.4 to 6.0 mg C · (mg Chl?1) · h?1. Thus, a lack of PFSL differentially impairs primarily CO2‐fixation and/or carbon metabolism, which, in turn, may determine which phytoplankton dominate the community in blackwater habitats and may therefore influence the structure and function of these ecosystems.  相似文献   

18.
Increasing anthropogenic carbon dioxide is causing changes to ocean chemistry, which will continue in a predictable manner. Dissolution of additional atmospheric carbon dioxide leads to increased concentrations of dissolved carbon dioxide and bicarbonate and decreased pH in ocean water. The concomitant effects on phytoplankton ecophysiology, leading potentially to changes in community structure, are now a focus of concern. Therefore, we grew the coccolithophore Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler and the diatom strains Thalassiosira pseudonana (Hust.) Hasle et Heimdal CCMP 1014 and T. pseudonana CCMP 1335 under low light in turbidostat photobioreactors bubbled with air containing 390 ppmv or 750 ppmv CO2. Increased pCO2 led to increased growth rates in all three strains. In addition, protein levels of RUBISCO increased in the coastal strains of both species, showing a larger capacity for CO2 assimilation at 750 ppmv CO2. With increased pCO2, both T. pseudonana strains displayed an increased susceptibility to PSII photoinactivation and, to compensate, an augmented capacity for PSII repair. Consequently, the cost of maintaining PSII function for the diatoms increased at increased pCO2. In E. huxleyi, PSII photoinactivation and the counter‐acting repair, while both intrinsically larger than in T. pseudonana, did not change between the current and high‐pCO2 treatments. The content of the photosynthetic electron transport intermediary cytochrome b6/f complex increased significantly in the diatoms under elevated pCO2, suggesting changes in electron transport function.  相似文献   

19.
Polyphosphates and phosphomonoesters are dominant components of marine dissolved organic phosphorus (DOP). Collectively, DOP represents an important nutritional phosphorus (P) source for phytoplankton growth in the ocean, but the contribution of specific DOP sources to microbial community P demand is not fully understood. In a prior study, it was reported that inorganic polyphosphate was not bioavailable to the model diatoms Thalassiosira weissflogii and Thalassiosira pseudonana. However, in this study, we show that the previous finding was a misinterpretation based on a technical artefact of media preparation and that inorganic polyphosphate is actually widely bioavailable to Thalassiosira spp. In fact, orthophosphate, inorganic tripolyphosphate (3polyP), adenosine triphosphate (ATP) and adenosine monophosphate supported equivalent growth rates and final growth yields within each of four strains of Thalassiosira spp. However, enzyme activity assays revealed in all cultures that cell-associated hydrolysis rates of 3polyP were typically more than ~10-fold higher than degradation of ATP and the model phosphomonoester compound 4-methylumbelliferyl phosphate. These results build on prior work, which showed the preferential utilization of polyphosphates in the cell-free exudates of Thalassiosira spp., and suggest that inorganic polyphosphates may be a key bioavailable source of P for marine phytoplankton.  相似文献   

20.
 A proposed major quantitative trait locus (QTL) for photoperiod sensitivity on chromosome 6 in rice was examined by introducing a chromosomal segment from a sensitive line into an insensitive one. The crossing experiments showed that a range of variation in heading date occurred in the later generations and that the region might contain at least a major gene and two additional recessive genes controlling photoperiod sensitivity. Gene mapping experiments showed that the major gene was Se-1 and that a recessive gene (tentatively named se-pat) was loosely linked to it. The responses to photoperiods were examined among the different genotypes under natural and controlled conditions. The two genes acted additively on the degree of photoperiod sensitivity. However, se-pat plants showed a response to photoperiods that differed from that of the other sensitive lines; a short-day treatment at the seedling stage delayed heading in the former plants, suggesting that the manner of its expression was age-dependent. A recessive gene similar to se-pat seemed to be widely distributed in wild and cultivated rice, suggesting that the gene complex in the region plays a significant role in response to photoperiod. Received: 8 October 1997 / Accepted: 1 April 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号