首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
The effects of elevated partial pressure of CO2 ( p CO2) and temperature, alone and in combination, on survival, calcification and dissolution were investigated in the crustose coralline alga Lithophyllum cabiochae . Algae were maintained in aquaria during 1 year at near-ambient conditions of irradiance, at ambient or elevated temperature (+3 °C) and at ambient [ca. 400 parts per million (ppm)] or elevated p CO2 (ca. 700 ppm). Algal necroses appeared at the end of summer under elevated temperature first at 700 ppm (60% of the thallus surface) and then at 400 ppm (30%). The death of algae was observed only under elevated temperature and was two- to threefold higher under elevated p CO2. During the first month of the experiment, net calcification was significantly reduced under elevated p CO2. At the end of the summer period, net calcification decreased by 50% when both temperature and p CO2 were elevated while no effect was found under elevated temperature and elevated p CO2 alone. In autumn and winter, net calcification in healthy algae increased with increasing temperature, independently of the p CO2 level, while necroses and death in the algal population caused a net dissolution at elevated temperature and p CO2. The dissolution of dead algal thalli was affected by elevated p CO2, being two- to fourfold higher than under ambient p CO2. These results suggest that net dissolution is likely to exceed net calcification in L. cabiochae by the end of this century. This could have major consequences in terms of biodiversity and biogeochemistry in coralligenous communities dominated by these algae.  相似文献   

2.
As the process of ocean acidification alters seawater carbon chemistry, physiological processes such as skeletal accretion are expected to become more difficult for calcifying organisms. The crustose coralline red algae (Corallinales, Rhodophyta) form an important guild of calcifying primary producers in the temperate Northeast Pacific. The morphology of important ecological traits, namely, skeletal density and thallus thickness near the growing edge, was evaluated in Pseudolithophyllum muricatum (Foslie) Steneck & R.T. Paine, the competitively dominant alga within this guild. P. muricatum shows a morphological response to increased ocean acidification in the temperate Northeast Pacific. Comparing historical (1981–1997) and modern (2012) samples from the field, crust thickness near the growing edge was approximately half as thick in modern samples compared with historical samples, while crust calcite density showed no significant change between the two sample groups. Morphological changes at the growing edge have important consequences for mediating competitive interactions within this guild of algae, and may affect the role of crustose coralline algal beds as hosts to infaunal communities and facilitators of recruitment in many invertebrate and macroalgal species.  相似文献   

3.
Mäerl/rhodolith beds are protected habitats that may be affected by ocean acidification (OA), but it is still unclear how the availability of CO2 will affect the metabolism of these organisms. Some of the inconsistencies found among OA experimental studies may be related to experimental exposure time and synergetic effects with other stressors. Here, we investigated the long‐term (up to 20 months) effects of OA on the production and calcification of the most common mäerl species of southern Portugal, Phymatolithon lusitanicum. Both the photosynthetic and calcification rates increased with CO2 after the first 11 months of the experiment, whereas respiration slightly decreased with CO2. After 20 months, the pattern was reversed. Acidified algae showed lower photosynthetic and calcification rates, as well as lower accumulated growth than control algae, suggesting that a metabolic threshold was exceeded. Our results indicate that long‐term exposure to high CO2 will decrease the resilience of Phymatolithon lusitanicum. Our results also show that shallow communities of these rhodoliths may be particularly at risk, while deeper rhodolith beds may become ocean acidification refuges for this biological community.  相似文献   

4.
Seawater acidification from increasing CO2 is often enhanced in coastal waters due to elevated nutrients and sedimentation. Our understanding of the effects of ocean and coastal acidification on present‐day ecosystems is limited. Here we use data from three independent large‐scale reef monitoring programs to assess coral reef responses associated with changes in mean aragonite saturation state (Ωar) in the Great Barrier Reef World Heritage Area (GBR). Spatial declines in mean Ωar are associated with monotonic declines in crustose coralline algae (up to 3.1‐fold) and coral juvenile densities (1.3‐fold), while non‐calcifying macroalgae greatly increase (up to 3.2‐fold), additionally to their natural changes across and along the GBR. These three key groups of organisms are important proxies for coral reef health. Our data suggest a tipping point at Ωar 3.5–3.6 for these coral reef health indicators. Suspended sediments acted as an additive stressor. The latter suggests that effective water quality management to reduce suspended sediments might locally and temporarily reduce the pressure from ocean acidification on these organisms.  相似文献   

5.
New empirical and quantitative data in the study of calcium carbonate biomineralization and an expanded coralline psbA framework for phylomineralogy are provided for crustose coralline red algae. Scanning electron microscopy (SEM) and energy dispersive spectrometry (SEM‐EDS) pinpointed the exact location of calcium carbonate crystals within overgrown reproductive conceptacles in rhodolith‐forming Lithothamnion species from the Gulf of Mexico and Pacific Panama. SEM‐EDS and X‐ray diffraction (XRD) analysis confirmed the elemental composition of these calcium carbonate crystals to be aragonite. After spore release, reproductive conceptacles apparently became overgrown by new vegetative growth, a strategy that may aid in sealing the empty conceptacle chamber, hence influencing the chemistry of the microenvironment and in turn promoting aragonite crystal growth. The possible relevance of various types of calcium carbonate polymorphs present in the complex internal structure and skeleton of crustose corallines is discussed. This is the first study to link SEM, SEM‐EDS, XRD, Microtomography and X‐ray microscopy data of aragonite infill in coralline algae with phylomineralogy. The study contributes to the growing body of literature characterizing and speculating about how the relative abundances of carbonate biominerals in corallines may vary in response to changes in atmospheric pCO2, ocean acidification, and global warming.  相似文献   

6.
Previous studies have shown that increasing atmospheric CO2 concentrations affect calcification in some planktonic and macroalgal calcifiers due to the changed carbonate chemistry of seawater. However, little is known regarding how calcifying algae respond to solar UV radiation (UVR, UVA+UVB, 280–400 nm). UVR may act synergistically, antagonistically or independently with ocean acidification (high CO2/low pH of seawater) to affect their calcification processes. We cultured the articulated coralline alga Corallina sessilis Yendo at 380 ppmv (low) and 1000 ppmv (high) CO2 levels while exposing the alga to solar radiation treatments with or without UVR. The presence of UVR inhibited the growth, photosynthetic O2 evolution and calcification rates by13%, 6% and 3% in the low and by 47%, 20% and 8% in the high CO2 concentrations, respectively, reflecting a synergistic effect of CO2 enrichment with UVR. UVR induced significant decline of pH in the CO2‐enriched cultures. The contents of key photosynthetic pigments, chlorophyll a and phycobiliproteins decreased, while UV‐absorptivity increased under the high pCO2/low pH condition. Nevertheless, UV‐induced inhibition of photosynthesis increased when the ratio of particulate inorganic carbon/particulate organic carbon decreased under the influence of CO2‐acidified seawater, suggesting that the calcified layer played a UV‐protective role. Both UVA and UVB negatively impacted photosynthesis and calcification, but the inhibition caused by UVB was about 2.5–2.6 times that caused by UVA. The results imply that coralline algae suffer from more damage caused by UVB as they calcify less and less with progressing ocean acidification.  相似文献   

7.
The response of respiration, photosynthesis, and calcification to elevated pCO2 and temperature was investigated in isolation and in combination in the Mediterranean crustose coralline alga Lithophyllum cabiochae. Algae were maintained in aquaria during 1 year at near‐ambient conditions of irradiance, at ambient or elevated temperature (+3°C), and at ambient (ca. 400 μatm) or elevated pCO2 (ca. 700 μatm). Respiration, photosynthesis, and net calcification showed a strong seasonal pattern following the seasonal variations of temperature and irradiance, with higher rates in summer than in winter. Respiration was unaffected by pCO2 but showed a general trend of increase at elevated temperature at all seasons, except in summer under elevated pCO2. Conversely, photosynthesis was strongly affected by pCO2 with a decline under elevated pCO2 in summer, autumn, and winter. In particular, photosynthetic efficiency was reduced under elevated pCO2. Net calcification showed different responses depending on the season. In summer, net calcification increased with rising temperature under ambient pCO2 but decreased with rising temperature under elevated pCO2. Surprisingly, the highest rates in summer were found under elevated pCO2 and ambient temperature. In autumn, winter, and spring, net calcification exhibited a positive or no response at elevated temperature but was unaffected by pCO2. The rate of calcification of L. cabiochae was thus maintained or even enhanced under increased pCO2. However, there is likely a trade‐off with other physiological processes. For example, photosynthesis declines in response to increased pCO2 under ambient irradiance. The present study reports only on the physiological response of healthy specimens to ocean warming and acidification, however, these environmental changes may affect the vulnerability of coralline algae to other stresses such as pathogens and necroses that can cause major dissolution, which would have critical consequence for the sustainability of coralligenous habitats and the budgets of carbon and calcium carbonate in coastal Mediterranean ecosystems.  相似文献   

8.
The production of the marine trace gas dimethyl sulfide (DMS) provides 90% of the marine biogenic sulfur in the atmosphere where it affects cloud formation and climate. The effects of increasing anthropogenic CO2 and the resulting warming and ocean acidification on trace gas production in the oceans are poorly understood. Here we report the first measurements of DMS‐production and data on growth, DMSP and DMS concentrations in pH‐stated cultures of the phytoplankton haptophyte Emiliania huxleyi. Four different environmental conditions were tested: ambient, elevated CO2 (+CO2), elevated temperature (+T) and elevated temperature and CO2 (+TCO2). In comparison to the ambient treatment, average DMS production was about 50% lower in the +CO2 treatment. Importantly, temperature had a strong effect on DMS production and the impacts outweighed the effects of a decrease in pH. As a result, the +T and +TCO2 treatments showed significantly higher DMS production of 36.2 ± 2.58 and 31.5 ± 4.66 μmol L?1 cell volume (CV) h?1 in comparison with the +CO2 treatment (14.9 ± 4.20 μmol L?1 CV h?1). As the cultures were aerated with an air/CO2 mixture, DMS was effectively removed from the incubation bottles so that concentration remained relatively low (3.6–6.1 mmol L?1 CV). Intracellular DMSP has been shown to increase in E. huxleyi as a result of elevated temperature and/or elevated CO2 and our results are in agreement with this finding: the ambient and +CO2 treatments showed 125 ± 20.4 and 162 ± 27.7 mmol L?1 CV, whereas +T and +TCO2 showed significantly increased intracellular DMSP concentrations of 195 ± 15.8 and 211 ± 28.2 mmol L?1 CV respectively. Growth was unaffected by the treatments, but cell diameter decreased significantly under elevated temperature. These results indicate that DMS production is sensitive to CO2 and temperature in E. huxleyi. Hence, global environmental change that manifests in ocean acidification and warming may not result in decreased DMS as suggested by earlier studies investigating the effect of elevated CO2 in isolation.  相似文献   

9.
Cold‐water coral (CWC) reefs are recognized as ecologically and biologically significant areas that generate habitats and diversity. The interaction between hydrodynamics and CWCs has been well studied at the Mingulay Reef Complex, a relatively shallow area of reefs found on the continental shelf off Scotland, UK. Within ‘Mingulay Area 01’ a rapid tidal downwelling of surface waters, brought about as an internal wave, is known to supply warmer, phytoplankton‐rich waters to corals growing on the northern flank of an east‐west trending seabed ridge. This study shows that this tidal downwelling also causes short‐term perturbations in the inorganic carbon (CT) and nutrient dynamics through the water column and immediately above the reef. Over a 14 h period, corresponding to one semi‐diurnal tidal cycle, seawater pH overlying the reef varied by ca. 0.1 pH unit, while pCO2 shifted by >60 μatm, a shift equivalent to a ca. 25 year jump into the future, with respect to atmospheric pCO2. During the summer stratified period, these downwelling events result in the reef being washed over with surface water that has higher pH, is warmer, nutrient depleted, but rich in phytoplankton‐derived particles compared to the deeper waters in which the corals sit. Empirical observations, together with outputs from the European Regional Shelf Sea Ecosystem Model, demonstrate that the variability that the CWC reefs experience changes through the seasons and into the future. Hence, as ocean acidification and warming increase into the future, the downwelling event specific to this site could provide short‐term amelioration of corrosive conditions at certain times of the year; however, it could additionally result in enhanced detrimental impacts of warming on CWCs. Natural variability in the CT and nutrient conditions, as well as local hydrodynamic regimes, must be accounted for in any future predictions concerning the responses of marine ecosystems to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号