首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nitric oxide (NO) attenuates hypoxia-induced endothelin (ET)-1 expression in cultured umbilical vein endothelial cells. We hypothesized that NO similarly attenuates hypoxia-induced increases in ET-1 expression in the lungs of intact animals and reasoned that potentially reduced ET-1 levels may contribute to the protective effects of NO against the development of pulmonary hypertension during chronic hypoxia. As expected, hypoxic exposure (24 h, 10% O(2)) increased rat lung ET-1 peptide and prepro-ET-1 mRNA levels. Contrary to our hypothesis, inhaled NO (iNO) did not attenuate hypoxia-induced increases in pulmonary ET-1 peptide or prepro-ET-1 mRNA levels. Because of this surprising finding, we also examined the effects of NO on hypoxia-induced increases in ET peptide levels in cultured cell experiments. Consistent with the results of iNO experiments, administration of the NO donor S-nitroso-N-acetyl-penicillamine to cultured bovine pulmonary endothelial cells did not attenuate increases in ET peptide levels resulting from hypoxic (24 h, 3% O(2)) exposure. In additional experiments, we examined the effects of NO on the activity of a cloned ET-1 promoter fragment containing a functional hypoxia inducible factor-1 binding site in reporter gene experiments. Whereas moderate hypoxia (24 h, 3% O(2)) had no effect on ET-1 promoter activity, activity was increased by severe hypoxic (24 h, 0.5% O(2)) exposure. ET-1 promoter activity after S-nitroso-N-acetyl-penicillamine administration during severe hypoxia was greater than that in normoxic controls, although activity was reduced compared with that in hypoxic controls. These findings suggest that hypoxia-induced pulmonary ET-1 expression is unaffected by NO.  相似文献   

2.
3.
The cardiovascular benefit of fish oil, including eicosapentaenoic acid (EPA), in humans and experimental animals has been reported. The role of endothelin-1 (ET-1) in cardiac hypertrophy is well known. Endothelin-1 stimulates prepro-ET-1 mRNA expression in cardiomyocytes, and the autocrine/paracrine system of ET-1 is important for cardiomyocyte hypertrophy. Although many studies link EPA to cardiac protection, the effect of EPA on cardiac hypertrophy has yet to be clarified. Recently, we demonstrated that ET-1-induced cardiomyocytic change could be prevented by pretreatment with EPA. The present study investigated the changes of different components of the ET system at the mRNA level in ET-1-administered cardiomyocytes, and examined the effect of EPA pretreatment. Ventricular cardiomyocytes were isolated from 2-day-old Sprague-Dawley rats, cultured in Dulbecco's modified Eagle's medium and Ham F12 supplemented with 0.1% fatty acid-free bovine serum albumin for 3 days. At Day 4 of culture, the cardiomyocytes were divided into 3 groups: control group, ET-1-treated (0.1 nM) group, and ET-1-treated group pretreated with EPA (10 microM). Twenty-four hours after treatment, the gene expressions of different components of the endothelin system in three experimental groups were evaluated by real-time polymerase chain reaction. Prepro-ET-1 mRNA expression was 53% upregulated in ET-1-induced hypertrophied cardiomyocytes and suppressed in the EPA-pretreated group. Endothelin-converting enzyme-1 (ECE-1) was also increased in ET-1-administered cardiomyocytes by 42% compared with the control group and was reversed in the EPA-pretreated group. The two receptors of ET system, ET(A) and ET(B), tended to be increased in the ET-1-treated group, but no statistical significance was seen among study groups. Endothelin-1 increased prepro-ET-1 and ECE-1 mRNA expression in hypertrophied-neonatal cardiomyocytes, and this was reversed with EPA pretreatment. Thus, EPA may play a crucial role in the regression of ET-1-induced cardiomyocyte hypertrophy, partly through the suppression of ET-1 and ECE-1 expression.  相似文献   

4.
We investigated the effects of the nitric oxide (NO) donor molsidomine and the nitric oxide synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME) on pulmonary endothelin (ET)-1 gene expression and ET-1 plasma levels in chronic hypoxic rats. Two and four weeks of hypoxia (10% O2) significantly increased right ventricular systolic pressure, the medial cross-sectional vascular wall area of the pulmonary arteries, and pulmonary ET-1 mRNA expression (2-fold and 3.2-fold, respectively). ET-1 plasma levels were elevated after 4 wk of hypoxia. In rats exposed to 4 wk of hypoxia, molsidomine (15 mg x kg(-1) x day(-1)) given either from the beginning or after 2 wk of hypoxia significantly reduced pulmonary hypertension, pulmonary vascular remodeling, pulmonary ET-1 gene expression, and ET-1 plasma levels. L-NAME administration (45 mg x kg(-1) x day(-1)) in rats subjected to 2 wk of hypoxia did not modify these parameters. Our findings suggest that in chronic hypoxic rats, exogenously administered NO acts in part by suppressing the formation of ET-1. In contrast, inhibition of endogenous NO production exerts only minor effects on the pulmonary circulation and pulmonary ET-1 synthesis in these animals.  相似文献   

5.
Endothelin-1 (ET-1) and nitric oxide (NO) exert opposite effects in the cardiovascular system, and there is evidence that the NO counters the potential deleterious effects of ET-1. We investigated whether NO affects the increased mRNA expression of ET-1 and endothelin receptors induced by (i) 30 min of ischemia with or without 30 min reperfusion in myocytes from isolated rat hearts or (ii) ischemic conditions (acidosis or hypoxia) in cultured rat neonatal ventricular myocytes. Ischemia with or without reperfusion produced more than a twofold increase in mRNA expression of ET-1 as well as the ET(A) and ET(B) receptor (P < 0.05), although these effects were completely blocked by the NO donor 3-morpholinosydnonimine (SIN-1; 1 microM). To assess the possible factors regulating ET expression, myocytes were exposed to acidosis (pH 6.8-6.2) or to hypoxic conditions in an anaerobic chamber for 24 h in the presence or absence of SIN-1. At all acidic pHs, ET-1 and ET(A) receptor mRNA expression was significantly (P < 0.05) elevated approximately threefold, although the magnitude of elevation was independent of the degree of acidosis. These effects were completely prevented by SIN-1. ET(B) receptor expression was unaffected by acidosis. Hypoxia increased ET-1 as well as ET(A) and ET(B) receptor expression threefold (P < 0.05), although this was unaffected by SIN-1. Our results demonstrate that myocardial ischemia and reperfusion upregulate the ET system, which is inhibited by NO. Although increased expression of the ET system can be mimicked by both acidosis and hypoxia, only the effects of the former are NO sensitive. NO may serve an endogenous inhibitory factor which regulates the expression of the ET system under pathological conditions.  相似文献   

6.
We previously reported that cardiomyocytes produce endothelin (ET)-1 and that the tissue level of ET-1 markedly increased in failing hearts in rats with chronic heart failure. Because the level of plasma ET-1 also increased progressively in patients with breast cancer who received doxorubicin (Dox; Adriamycin), which possesses cardiotoxicity, we hypothesized that ET-1 plays a role in the pathophysiology of cardiomyocytes injured by Dox. In this study, we investigated the effect of ET-1 on the cytotoxicity of Dox in primary cultured neonatal rat cardiomyocytes. The results showed that ET-1 effectively attenuated Dox-induced acute cardiomyocyte cytotoxicity (24-h incubation with Dox) evaluated by in vitro cell toxicity assay [3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay and lactate dehydrogenase release]. The cytoprotective effect of ET-1 was mediated via ET(A) receptors, because pretreatment with the ET(A)-receptor antagonist BQ123 completely suppressed the cytoprotective effect of ET-1, whereas the ET(B)-receptor antagonist BQ788 did not. The cytoprotective effect of ET-1 was abolished by pretreatment with cycloheximide or staurosporine. These results suggest that a protein molecule(s), which is synthesized de novo by the stimulation of protein kinase pathway, is involved in the cytoprotective effect of ET-1. ET-1 increased the expression of an endogenous antioxidant, manganese superoxide dismutase (Mn-SOD), in the cardiomyocytes, as demonstrated by a Western blotting analysis. Pretreatment with an antisense oligodeoxyribonucleotide of Mn-SOD markedly attenuated the cytoprotective effect of ET-1 on the Dox-induced cytotoxicity. However, under conditions of prolonged incubation with Dox (48 h), ET-1 did not affect Dox-induced cardiomyocyte cytotoxicity in culture. These results suggest that ET-1 prevents the early phase of Dox-induced cytotoxicity via the upregulation of the antioxidant Mn-SOD through ET(A) receptors in cultured cardiomyocytes.  相似文献   

7.
Apoptosis is well documented to be a common feature of many pathological processes of the heart. Exogenous endothelin-1 (ET-1) has been shown to be proapoptotic or antiapoptotic, depending on ET-1 concentration, cell type, and the ratio of ETA/ETB receptor subtypes. The role of endogenous ET-1 in cardiomyocyte apoptosis, however, is not clarified. This study observed the effects of the ETA-receptor antagonists BQ610 and BQ123 and the ETB-receptor antagonist BQ788 on hypoxia-induced apoptosis in primary cultured neonatal rat cardiomyocytes. Hypoxic apoptosis was induced by incubating cardiomyocytes in serum-free medium under 3% O2 and 5% CO2 for 24 h and evaluated by TUNEL analysis and flow cytometry. TUNEL analysis showed that the apoptotic cardiomyocytes constituted 24.2% +/- 2.2% of the total cells under hypoxic conditions. Treatment with BQ610 (5 micromol/L) significantly reduced the apoptosis rate to 13.2% +/- 3.7% (data from 4 independent experiments, p < 0.01 vs. hypoxia). Flow cytometry showed that the percentage of apoptotic cells positively stained with annexin V and propidium iodide was 42.76% +/- 4.44% (n = 12) in cultures subjected to hypoxia. BQ123 at 0.04, 0.2, and 1.0 micromol/L dose-dependently reduced the apoptosis rate to 34.00% +/- 10.35% (n = 6, p < 0.05), 30.38% +/- 8.28% (n = 6, p < 0.01), and 22.89% +/- 4.19% (n = 6, p < 0.01), respectively. In contrast, BQ788 did not affect hypoxic apoptosis. These findings suggested that endogenous ET-1 contributed to hypoxia-induced apoptosis in cultured cardiomyocytes, which was mediated by ETA receptors, but not by ETB receptors.  相似文献   

8.
We tested the hypothesis that pulmonary endothelial nitric oxide synthase (eNOS) gene expression is primarily regulated by hemodynamic factors and is thus increased in rats with chronic hypoxic pulmonary hypertension. Furthermore, we examined the role of endothelin (ET)-1 in this regulatory process, since ET-1 is able to induce eNOS via activation of the ET-B receptor. Therefore, chronic hypoxic rats (10% O(2)) were treated with the selective ET-A receptor antagonist LU-135252 (50 mg x kg(-1) x day(-1)). Right ventricular systolic pressure and cross-sectional medial vascular wall area of pulmonary arteries rose significantly, and eNOS mRNA levels increased 1.8- and 2.6-fold after 2 and 4 wk of hypoxia, respectively (each P < 0.05). Pulmonary ET-1 mRNA and ET-1 plasma levels increased significantly after 4 wk of hypoxia (each P < 0.05). LU-135252 reduced right ventricular systolic pressure, vascular remodeling, and eNOS gene expression in chronic hypoxic rats (each P < 0.05), whereas ET-1 production was not altered. We conclude that eNOS expression in chronic hypoxic rat lungs is modified predominantly by hemodynamic factors, whereas the ET-B receptor-mediated pathway and hypoxia seem to be less important.  相似文献   

9.
10.
内皮素-1预处理对培养乳鼠心肌细胞低氧损伤的保护作用   总被引:13,自引:0,他引:13  
Pan YX  Lin L  Yuan WJ  Tang CS 《生理学报》2003,55(2):171-176
实验观察了 0 0 1- 1nmol/L内皮素 1(ET 1)预处理对低氧孵育 ( 3 %O2 5 %CO2 ,12h)的培养乳鼠心肌细胞乳酸脱氢酶 (LDH)释放量、培养液上清超氧化物歧化酶 (SOD)活性以及丙二醛 (MDA)含量的影响。用Fluo 3 /AM负载培养的心肌细胞 ,在激光扫描共聚焦显微镜下监测急性低氧的心肌细胞 [Ca2 +]i 的变化和ET 1预处理对低氧所致 [Ca2 +]i 变化的影响。结果如下 :( 1)心肌细胞低氧孵育 12h后 ,培养液上清LDH活力和MDA含量较常氧对照组明显升高 ,分别为 43 3 3± 1 2 1U/Lvs 19 3 3± 1 0 3U/L和 1 71± 0 0 2nmol/Lvs 0 91± 0 0 3nmol/L (P<0 0 1) ,SOD活性为 16 93± 1 11U/ml明显低于常氧对照组的 3 3 48± 1 15U/ml (P <0 0 1) ;0 0 1- 1nmol/LET 1预处理呈浓度依赖性抑制低氧培养心肌细胞LDH释放 ,减少培养液上清MDA含量、提高SOD活性 (P <0 0 1)。 ( 2 )低氧灌流后 2 9± 1 5s (n =2 3 )心肌细胞自发性钙瞬变完全终止 ,[Ca2 +]i 升高了 10 7± 13 2 % (P <0 0 0 1) ;0 0 1- 1nmol/LET 1能明显加快心肌细胞钙瞬变的频率 (P <0 0 1) ;ET 1预处理后低氧所致钙瞬变终止的时间较单纯低氧组明显推迟 ,[Ca2 +]i过度升高被明显减轻 (P <0 0 1)。上述结果表明 ,0 0 1- 1nmol/LET 1预处理可减轻培  相似文献   

11.
Human heart failure is preceded by a process called cardiac remodeling, in which heart chambers progressively enlarge and contractile function deteriorates. Programmed cell death (apoptosis) of cardiac muscle cells has been identified as an essential process in the progression to heart failure. The execution of the apoptotic program entails complex interactions between and execution of multiple molecular subprograms. Endothelin (ET)-1, a potent vasoconstrictor peptide, is synthesized and secreted by cardiomyocytes and induces hypertrophy of cardiomyocytes. The cardiovascular benefit of fish oil containing eicosapentaenoic acid (EPA) in humans and experimental animals was reported. Recently, we found that ET-1-induced cardiomyocytic remodeling could be prevented by pretreatment with EPA. The aim of the present study is to investigate whether there would be any alteration in the expression of important apoptosis-related molecules in ET-1-administered hypertrophied cardiomyocytes. We also sought to determine, if there are alterations in apoptotic molecules, what type of role for EPA would then exist. Ventricular cardiomyocytes were isolated from 2-day-old Sprague-Dawley rats and were cultured for 3 days. At Day 4 of culture, the cardiomyocytes were divided into three groups: control, the ET-1 (0.1 nM)-treated group, and the ET-1 group pretreated with EPA (10 microM). Twenty-four hours after the treatment, the gene expressions of three important molecules related to apoptosis (caspase-3, Bax, and Bcl-2) in three experimental groups were evaluated by real-time polymerase chain reaction. The present study could not demonstrate any significant or representative alteration in any of the above three apoptosis-related important markers in either ET-1-induced hypertrophied cardiomyocytes with or without EPA pretreatment. The present study would at least be able to exclude the involvement of some representative molecules related to apoptosis in ET-1-induced hypertrophied cardiomyocytes. In addition, the present study demonstrates that the antihypertrophic effect of EPA to ET-1-administered cardiomyocytes appears not to modulate the apoptosis signaling cascade.  相似文献   

12.
To investigate the effect of pulmonary alveolar hypoxia on the synthesis and release of endothelin (ET)-1, ET-1-like immunoreactivity (-LI) levels of the lung and plasma were measured in conscious unrestrained rats under hypoxic conditions. Sixty-min exposure to alveolar hypoxia (10% O2 or 5% O2) increased the ET-1-LI level in the lung. The plasma ET-1-LI level in hypoxic rats also increased significantly. The increase of plasma and lung ET-1-LI levels were parallel to the severity of hypoxia. These results demonstrates that acute pulmonary alveolar hypoxia increases lung and plasma ET-1-LI levels in conscious unrestrained rats, suggesting a possible physiological or pathophysiological significance of ET in alveolar hypoxia.  相似文献   

13.
BACKGROUND: Vascular endothelial growth factor (VEGF) gene transfer with recombinant adeno-associated viral (rAAV) vector for ischemia heart disease therapy is being increasingly studied. However, uncontrolled long-term expression of VEGF may cause some side effects. Therefore, an attempt to develop an effective gene control system for safeguarding against such side effects should be made. Pathphysiologically, an ideal control system for VEGF gene expression is letting it respond to hypoxia. We used nine copies of hypoxic response element (HRE) to regulate expression of hVEGF(165) in the myocardium, and tried to elucidate the feasibility and safety of the application of the HIF-1-HRE system. METHODS: Cardiomyocytes of neonatal Sprague Dawley rats were cultured and incubated with rAAV-9HRE-hVEGF(165), and pig ischemic heart models were established and rAAV-9HRE-hVEGF(165) was injected into ischemia myocardium. RT-PCR, Western blot, ELISA, and immunohistochemistry were used to determine hVEGF(165) expressions of cultured cardiomyocytes and myocardium under hypoxic and reoxygenation conditions. RESULTS: The results of RT-PCR and ELISA determinations revealed that, in cultured cardiomyocytes, expressions of hVEGF(165)mRNA and protein were up-regulated under hypoxic conditions. After 4 h of reoxygenation, hVEGF(165)mNRA expression was decreased, and disappeared following 8 to 12 h of reoxygenation (P < 0.01). RT-PCR and Western blot also showed that, under myocardial ischemia, hVEGF(165) expression was increased significantly (P < 0.01). Following myocardial reperfusion, both hVEGF(165)mRNA and protein expressions were inhibited (P < 0.01). The new vessels in the reperfusion condition were decreased. CONCLUSIONS: This study suggested that 9HRE can effectively control hVEGF(165) gene expression in vivo and in vitro. It has feasibility for using the HIF-1-HRE system for regulation of angiogenic factor expression in ischemia heart.  相似文献   

14.
15.
Endothelin-1 (ET-1) has been implicated in hypertension, heart failure, atherosclerosis, and pulmonary hypertension. In all these conditions, plasma immunoreactive ET-1 levels are elevated, and tissue ET-1 expression is increased. Clinical trials have demonstrated potentially important benefits of ET antagonism among patients with essential hypertension, pulmonary hypertension, and heart failure. It is unknown whether ET antagonism affects the production of ET-1 in stroke-prone spontaneously hypertensive rat (SHRSP) heart at the typical hypertensive stage. The objective of this study was to investigate the effects of ET blockade on the expression levels of plasma and cardiac ET-1 in SHRSPs. SHRSPs were treated for 3 months with SB209670 (ET(A)/ET(B) dual receptor antagonist) or with saline (vehicle) commencing at the prehypertensive stage (age 6 weeks). Plasma and left ventricular ET-1 peptide levels were measured using enzyme-linked immunoabsorbent assay. Compared with age-matched control Wistar-Kyoto rats, peptide levels of ET-1 were significantly upregulated in vehicle-treated SHRSP heart; this upregulation was reversed by long-term ET antagonism. Plasma ET-1 levels were also significantly increased in vehicle-treated SHRSPs and were normalized by ET antagonism. mRNA expression of preproET-1, which is the source of ET-1 peptide production, was significantly increased in vehicle-treated SHRSP heart and was normalized by ET antagonism. Marked cardiac hypertrophy and fibrosis at the histologic level in SHRSPs were ameliorated by ET antagonism, and left ventricular hypertrophy as seen on echocardiography in SHRSPs was suppressed by ET blockade. After ET antagonism, systolic blood pressures were reduced in SHRSPs; diastolic blood pressures were unchanged. The reversal effect of the upregulated ET system in SHRSP heart by ET antagonism might be independent of blood pressure change. By suppressing the upregulated ET system, ET antagonism might be beneficial in arresting cardiac remodeling.  相似文献   

16.
Recently it was demonstrated that treatment with a nonselective endothelin (ET) receptor antagonist significantly reduces myocardial infarct size, which suggests a major role for ET in tissue repair following myocardial infarction (MI). Tissue repair and remodeling found at the site of MI are mainly attributed to myofibroblasts (myoFbs), which are phenotypically transformed fibroblasts that express alpha-smooth muscle actin. It is unclear whether myoFbs generate ET peptides and consequentially regulate pathophysiological functions de novo through expression of the ET-1 precursor (prepro-ET-1), ET-converting enzyme-1 (ECE-1), a metalloprotease that is required to convert Big ET-1 to ET-1 and ET receptors. To address these intriguing questions, we used cultured myoFbs isolated from 4-wk-old MI scar tissue. In cultured cells, we found: 1) expression of mRNA for ET precursor gene (ppET1), ECE-1, and ETA and ETB receptors by semiquantitative RT-PCR; 2) phosphoramidon-sensitive ECE-1 activity, which converts Big ET-1 to biologically active peptide ET-1; 3) expression of ETA and ETB receptors; 4) elaboration of Big ET-1 and ET-1 peptides in myoFb culture media; and 5) upregulation of type I collagen gene expression and synthesis by ET, which was blocked by bosentan (a nonselective ETA- and ETB receptor blocker). These studies clearly indicated that myoFbs express and generate ET-1 and receptor-mediated modulation of type I collagen expression by ET-1. Locally generated ET-1 may contribute to tissue repair of the infarcted heart in an autocrine/paracrine manner.  相似文献   

17.
Cardiomyocytes release (or metabolize) several diffusible agents (e.g., nitric oxide [NO], endothelin-1 [ET-1], and angiotensin II) that exert direct effects on myocyte function under various pathologic conditions. Although cardiac hypertrophy is a compensatory mechanism in response to different cardiovascular diseases, there can be a pathologic transition in which the myocardium becomes dysfunctional. Recently, NO has been found to be an important regulator of cardiac remodeling. Specifically, NO has been recognized as a potent antihypertrophic and proapoptotic mediator in cultured cardiomyocytes. We demonstrated that ET-1-induced hypertrophic remodeling in neonatal cardiomyocytes was arrested by pretreatment with eicosapentaenoic acid (EPA), a major component of fish oil. In some recent studies, EPA has demonstrated cardioprotective effects by modulating NO. This study investigated the changes in NO synthase (NOS) in ET-1-induced hypertrophied cardiomyocytes and in total levels of nitrates and nitrites. Ventricular cardiomyocytes were isolated from 2-day-old Sprague-Dawley rats and were cultured in D-MEM/Ham F12 supplemented with 0.1% fatty acid-free bovine serum albumin for 3 days. At Day 4 of culture, the cardiomyocytes were divided into three groups: control group, ET-1 (0.1 nM) group, and ET-1 pretreated with EPA (10 microM) group. NOS gene expression was evaluated 24 hrs after treatment using real-time polymerase chain reaction. Endothelial NOS (eNOS) mRNA expression was decreased in the ET-1 group compared with controls and was unchanged by pretreatment with EPA. mRNA expression of inducible NOS (iNOS) was significantly increased in ET-1-treated cardiomyocytes and was suppressed by EPA pretreatment. Neuronal NOS gene expression and total NO level did not exhibit a statistically significant change in any of the groups. There may be some interaction between ET-1, eNOS, and iNOS in ET-1-induced and EPA-regressed hypertrophied cardiomyocytes that suppress iNOS expression without modulating total NO level or eNOS gene expression.  相似文献   

18.
Both endothelin (ET) and adrenomedullin (AM), produced by cardiac myocytes, are thought to be locally-acting hormones in the heart. Recently, calcitonin receptor-like receptor (CRLR) and receptor activity modifying proteins (RAMPs) have been shown to function together to serve as AM receptors stimulating cAMP production. In the present study, we examined the effects of ET on AM secretion, intracellular cAMP response to AM, and gene expressions of CRLR and RAMPs in cultured cardiac myocytes. Synthetic ET-1 dose-dependently increased AM secretion from the cardiomyocytes. AM increased the intracellular cAMP level in a dose-dependent manner and the cAMP accumulation by AM was significantly amplified by 24 h preincubation with ET-1. 10 nmol/L ET-1 significantly increased the CRLR mRNA level without any effect on RAMP1 mRNA. 1 micromol/L ET-1 significantly reduced the RAMP2 mRNA level, but ET-1 dose-dependently increased the RAMP3 mRNA level in the cardiac myocytes. These findings suggest that ET-1 not only stimulates AM secretion, but also modulates intracellular cAMP responses to AM probably by altering the expressions of CRLR and RAMPs in rat cardiomyocytes.  相似文献   

19.
We investigated the time course of the expression of cardiac and renal endothelin systems in tachycardia-induced heart failure in dogs. Eleven beagles underwent rapid pacing at a progressively increased rate over a period of 5 wk, with a weekly clinical examination, echocardiography, measurement of circulating and urinary endothelin-1 (ET-1), and myocardial and renal tissue biopsies. Real-time quantitative PCR was used for determinations of tissue prepro-ET-1 (ppET-1), ET-1-converting enzyme (ECE-1), and ETA and ETB receptor mRNA. Cardiac and renal tissue ET-1 contents were evaluated by immunostaining and measured by radioimmunoassay at autopsy. Rapid pacing caused a progressive increase in end-systolic and end-diastolic ventricular volumes (P < 0.05) from week 2 together with a decrease in ejection fraction and in mean velocity of circumferential shortening (P < 0.05) from week 1. These changes were tightly correlated to myocardial ppET-1 and renal ETA receptor mRNA and less so to myocardial ECE-1 mRNA, and they occurred before any increase in plasma and urinary ET-1 (P < 0.05 from week 4) and clinical signs of heart failure. Renal ppET-1 did not change. Both cardiac and renal ET-1 peptide contents were increased at autopsy. We conclude that tachycardia-induced heart failure in dogs is characterized by an early activation of the cardiac and renal tissue endothelin systems, which occurs before any changes in circulating and urinary ET-1 and is closely related to altered ventricular function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号