首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The photoaffinity reagent 8-azidoadenosine 3':5'-monophosphate (8-N3cAMP) was previously shown to modify a single tyrosine residue on the type II regulatory subunit of cAMP-dependent protein kinase (Kerlavage, A.R., and Taylor, S.S. (1980) J. Biol. Chem, 255, 8483-8488). In the present studies, the binding stoichiometries of type II holoenzyme for cAMP and 8-N3cAMP were determined using Millipore filtration assays in the absence (Assay A) and presence (Assay B) of 2 M NaCl and histone. The binding stoichiometry of holoenzyme for cAMP was 2 mol/mol with Assay A, and 4 mol/mol with assay B. The binding stoichiometry for 8-N3cAMP was 2 mol/mol with Assay B or with Assay A following photolysis of the holoenzyme:8-N3cAMP mixture. In the absence of photolysis, the binding stoichiometry for 8-N3cAMP was 0.4 mol/mol with Assay A. Both 8-N3cAMP and cAMP fully dissociated the holoenzyme. Holoenzyme, labeled with 8-N3[3H]cAMP on a preparative scale, incorporated 1 mol of 8-N3[3H]cAMP/mol of regulatory subunit (RII) monomer. The labeled RII was separated from catalytic subunit, cleaved with cyanogen bromide, and the resultant peptides were separated by high performance liquid chromatography. A single radioactive peptide was observed which had the same NH2 terminal residue and amino acid composition as the peptide obtained when dissociated RII was labeled with 8-N3cAMP.  相似文献   

2.
J Bubis  S S Taylor 《Biochemistry》1985,24(9):2163-2170
Reconstituted porcine cAMP-dependent protein kinase type I was labeled with 8-azidoadenosine 3',5'-monophosphate (8-N3cAMP) to study cyclic nucleotide binding and to identify amino acid residues that are either in or in close proximity to the cAMP binding sites. The photoaffinity analogue 8-N3cAMP behaved as cAMP itself with respect to cyclic nucleotide binding. For both cAMP and 8-N3cAMP, 2 mol of nucleotide was bound per mole of type I regulatory subunit monomer (RI), the apparent Kd's observed were approximately 10-17 nM on the basis of either Millipore filtration assays, equilibrium dialysis, or ammonium sulfate precipitation, Scatchard plots showed positive cooperativity, and (4) the Hill coefficients were approximately 1.5-1.6. After photolysis and addition of an excess of cAMP, approximately 1 mol of 8-N3cAMP/mol of RI monomer was covalently incorporated. Tryptic digestion of the labeled protein revealed that two unique tryptic peptides were modified. Proline-271 and tyrosine-371 were identified as the two residues that were covalently modified by 8-N3cAMP in RI. These results contrast with the type II regulatory subunit (RII) where 8-N3cAMP modified covalently a single tyrosine residue [Kerlavage, A. R., & Taylor, S. S. (1980) J. Biol. Chem. 255, 8483-8488]. RI contains two adjacent regions of sequence homology in the COOH-terminal fragment that binds two molecules of cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
J Bubis  S S Taylor 《Biochemistry》1987,26(19):5997-6004
Photoaffinity labeling of the regulatory subunits of cAMP-dependent protein kinase with 8-azidoadenosine 3',5'-monophosphate (8-N3cAMP) has proved to be a very specific method for identifying amino acid residues that are in close proximity to the cAMP-binding sites. Each regulatory subunit contains two tandem cAMP-binding sites. The type II regulatory subunit (RII) from porcine heart was modified at a single site, Tyr-381 [Kerlavage, A., & Taylor, S.S. (1980) J. Biol. Chem. 255, 8483-8488]. When a proteolytic fragment of this RII subunit was photolabeled with 8-N3cAMP, two sites were covalently modified. One site corresponded to Tyr-381 and, thus, was analogous to the native RII. The other site of modification was identified as Tyr-196, which is not labeled in the native protein. Photoaffinity labeling was carried out in the presence of various analogues of cAMP that show a preference for one of the two tandem cAMP-binding sites. These studies established that the covalent modification of Tyr-381 was derived from 8-N3cAMP that was bound to the second cAMP-binding site (domain B) and that covalent modification to Tyr-196 was due to 8-N3cAMP that was bound to the first cAMP-binding site (domain A). These sites of covalent modification have been correlated with a model of each cAMP-binding site on the basis of the crystal structure of the catabolite gene activator protein (CAP), which is the major cAMP-binding protein in Escherichia coli.  相似文献   

4.
8-Azidoadenosine 3',5'-monophosphate (8-N3-cAMP) containing 32P has been used as a photoaffinity label specific for the adenosine 3',5'-monophosphate (cAMP) binding site(s) present in a partially purified preparation of soluble protein kinase from bovine brain. 8-N3-cAMP and cAMP were found to compete for the same binding site(s) in this preparation, as determined by a standard filter assay. When this protein preparation was equilibrated with [32P]-8-N3-cAMP, and then irradiated at 253.7 nm, the incorporation of radioactivity was predominantly into a protein with an apparent molecular weight of 49,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. This labeled protein comigrated in the gel with the only protein which is endogenously phosphorylated by [gamma-32P]ATP, a protein which has been shown to be the regulatory subunit of the protein kinase (H. Maeno, P. L. Reyes, T. Ueda, S. A. Rudolph, and P. Greengard (1974), Arch. Biochem. Biophys. 164, 551). The incorporation of [32P]-8-N3-cAMP into this protein was half-maximal at a concentration of 7 x 10(-8) M. In accordance with a proposed mechanism involving the formation of a highly reactive nitrene intermediate upon irradiation of the azide, the incorporation of radioactivity into protein was maximal within 10 min of irradiation, and was almost eliminated by preirradiation of the photolabile ligand. Moreover, this incorporation was virtually abolished by a 50-fold excess of cAMP, but not by AMP, ADP, ATP, or adenosine. We suggest that 8-N3-cAMP may prove to be a useful molecular probe of the cAMP-binding site in receptor proteins and report its use in conjunction with sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a highly sensitive and selective radiochemical marker for cAMP-binding proteins.  相似文献   

5.
The cAMP cell surface receptor of Dictyostelium discoideum amoebae was identified by the use of the photoaffinity analogue 8-N3-[32P]cAMP. Labeling by intact cells of one component, identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and autoradiography, could be specifically inhibited by the presence of nonradioactive cAMP. The component, P45 (apparent molecular weight of 45,000), was not identified on vegetative cells but was labeled with increasing intensity as cells differentiated and increased their levels of surface cAMP binding sites. Developmental mutants, starved under conditions where they do not express significant levels of cAMP binding sites, did not incorporate radioactivity into this protein. These mutants did label P45 when starved under differentiation-inducing conditions such that their levels of surface cAMP binding sites increased. P45 co-purified with the plasma membrane fraction isolated from cells to which 8-N3-[32p]cAMP had been covalently bound. Down-regulated amoebae, which displayed approximately 25% of the binding activity of untreated cells, did not label P45. These cells did, however, label a new component with an apparent molecular weight of 47,000 (P47).l The appearance of this component represented the only discernible difference in labeling profile under these conditions. As in the case of P45, radioactive incorporation into P47 did not occur if the photoactivation of 8-N3-[32P]cAMP was performed in the presence of nonradioactive cAMP.  相似文献   

6.
N alpha-(4-Amino-4-deoxy-10-methylpteroyl)-N epsilon-(4-azido-5- [125I]iodosalicylyl)-L-lysine, a photoaffinity analogue of methotrexate, is only 2-fold less potent than methotrexate in the inhibition of murine L1210 dihydrofolate reductase. Irradiation of the enzyme in the presence of an equimolar concentration of the 125I-labeled analogue ultimately leads to an 8% incorporation of the photoprobe. A 100-fold molar excess of methotrexate essentially blocks this incorporation. Cyanogen bromide digestion of the labeled enzyme, followed by high-pressure liquid chromatography purification of the generated peptides, indicates that greater than 85% of the total radioactivity is incorporated into a single cyanogen bromide peptide. Sequence analysis revealed this peptide to be residues 53-111, with a majority of the radioactivity centered around residues 63-65 (Lys-Asn-Arg). These data demonstrate that the photoaffinity analogue specifically binds to dihydrofolate reductase and covalently modifies the enzyme following irradiation and is therefore a photolabeling agent useful for probing the inhibitor binding domain of the enzyme.  相似文献   

7.
The aziridinium of purified quinacrine mustard at 50 microM inactivates the bovine heart mitochondrial F1-ATPase with a pseudo-first order rate constant of 0.07 min-1 at pH 7.0 and 23 degrees C. An apparent Kd of 27 microM for the enzyme-reagent complex was estimated from the dependence of the rate of inactivation on the concentration of quinacrine mustard. The pH inactivation profile revealed that deprotonation of a group with a pKa of about 6.7 is necessary for inactivation. The amount of reagent incorporated into the protein increased linearly with the extent of inactivation. Complete inactivation was estimated to occur when 3 mol of reagent were incorporated/mol of F1. Enzyme, in which steady state ATPase was inactivated by 98% by quinacrine mustard, hydrolyzed substoichiometric ATP with zero order kinetics suggesting that residual activity is catalyzed by F1 in which at least one beta subunit is modified. By exploiting the reactivity of the aziridinium of covalently attached reagent with [3H] aniline, sites modified by quinacrine mustard were labeled with 3H. Isolation of radioactive cyanogen bromide peptides derived from F1 inactivated with the reagent in the presence of [3H]aniline which were identified by sequence analysis and sequence analyses of radioactive tryptic fragments arising from them have revealed the following. About two thirds of the radioactivity incorporated into the enzyme during inactivation is apparently esterified to one or more of the carboxylic acid side chains in a CNBr-tryptic fragment of the beta subunit with the sequence: 394DELSEEDK401. The remainder of the radioactivity is associated with at least two sites within the cyanogen bromide peptide containing residues 293-358 of the beta subunit. From these results it is concluded that inactivation of F1 by the aziridinium of quinacrine mustard is due, at least in part, to modification of one or more of the carboxylic acid side chains in the DELSEED segment of the beta subunit and possibly also to modification of unspecified amino acid side chains between residues 302-356 of the beta subunit.  相似文献   

8.
B E Haley 《Biochemistry》1975,14(17):3852-3857
To identify and investigate the cAMP binding sites of human red cell membranes a photoaffinity analog of cAMP, 8-azidoadenosine 3',5'-cyclic monophosphate (8-N3cAMP), has been synthesized. This analog activates cAMP-dependent protein kinase(s) in the red cell membrane. It exhibits tight, but reversible binding to the membranes which is competitive with cAMP. Photolysis of [32P]-8-N3cAMP with red cell membranes results in covalent incorporation of radioactive label onto two specific membrane proteins. This incorporation requires activating light and is reduced to background levels with addition of low levels of cAMP. Prephotolysis of 8-N3cAMP completely abolished its ability to photolabel membrane proteins. Both the reversible and photocatalyzed binding of 8-N3cAMP show saturation kinetics. The molecular weights of the two primarily labeled proteins are approximately 49,000 and 55,000. The differential effects of cAMP, ATP, and adenosine on the photocatalyzed incorporation of [32P]-8-N3cAMP onto these two proteins suggest that they have biochemically different properties. The potential usefulness of this compound for investigating various molecular aspects of cAMP action is discussed.  相似文献   

9.
H Aiba  J S Krakow 《Biochemistry》1980,19(9):1857-1861
Photoaffinity labeling of the cAMP receptor protein (CRP) of Escherichia coli with 8-azidoadenosine 3',5'-monophosphate (8-N3cAMP) has been demonstrated. 8-N3cAMP is able to support the binding of (3H)d(I-C)n by CRP, indicating that it is a functional cAMP analogue. Following irradiation at 254 nm, (32P)-8-N3cAMP is photocross-linked to CRP. Photolabeling of CRP by (32P)-8-N3cAMP is inhibited by cAMP but not by 5'AMP. The data indicate that (32P)-8-N3cAMP is covalently incorporated following binding at the cAMP binding site of CRP. The (32P)-8-N3cAMP-CRP digested with chymotrypsin was analyzed by NaDodSO4-polyacrylamide gel electrophoresis. Of the incorporated label, one-third remains associated with the amino-proximal alpha core region of CRP [Eilen, E., Pampeno, C., & Krakow, J.S. (1978) Biochemistry 17, 2469] which contains the cAMP binding domain; the remaining two-thirds of the label associated with the beta region are digested. Limited proteolysis of the (32P)-8-N3cAMP-CRP by chymotrypsin in the presence of NaDodSO4 shows the radioactivity to be distributed between the molecular weight 9500 (amino-proximal) and 13,000 (carboxyl-proximal) fragments produced. These results suggest that a part of the carboxyl-proximal region is folded over and close enough to the cAMP binding site to be cross-linked by the photoactivated (32P)-8-N3cAMP bound at the cAMP binding site.  相似文献   

10.
During the G1/S transition of the cell cycle variations in the labelling by 8-N3-[32P]cAMP of the protein kinase A regulatory subunits RI and RII, used as a probe to monitor post-translational modifications that may regulate cAMP binding, were observed in synchronized HeLa cells. A decrease in 8-N3-[32P]cAMP labelling of RI, RII and RII phosphorylated by the catalytic subunit of PKA was correlated with the increased percentage of cells in phases G1. An increase in 8-N3-[32P]cAMP incorporated into the 54-kDa RII subunit during progression from G1 to S was correlated with an increase in intracellular cAMP. A transient increase in Mn-SOD activity was detected in cells arrested at the G1/S transition using two different techniques, suggesting that oxidative modulation of regulatory subunits by free radicals may modify cAMP binding sites during the cell cycle. Decreased photoaffinity labelling by 8-N3-[32P]cAMP of RI, RII and autophosphorylated RII subunits was found to be an inherent characteristic of PKA in the G1/S transition.  相似文献   

11.
A radioactive photoaffinity probe for the insulin receptor was prepared by derivatizing insulin at its B29 lysine with a novel crosslinking reagent having a cleavable azo linkage. Insulin receptors purified from human placental membranes were photoaffinity labeled with this probe. The photolabeled receptor was treated with dithionite to cleave the azo linkage, thereby removing the insulin ligand and transferring the radioactivity to the receptor protein. The radioactive labeled subunit was isolated and digested with elastase for peptide mapping and separation by high performance liquid chromatography. Results obtained indicated that it will be feasible to use this new photoaffinity probe to obtain radioactive peptides representing the insulin-binding site(s) on the receptor subunit.  相似文献   

12.
Homogenous regulatory subunit from rabbit skeletal muscle cAMP-dependent protein kinase (isozyme I) was partially hydrolyzed with low (1 g/1300 g) or high (1 g/6 g) concentrations of trypsin. After treatment with low trypsin two main peptides (Mr = 35,000 and 12,000) were produced. The cAMP-binding activity (2 mol cAMP/mol of subunit monomer) was recovered in the monomeric Mr = 35,000 peptide. The ability of either fragment to inhibit catalytic subunit activity was lost. Treatment of the regulatory subunit with a high concentration of trypsin yielded three main fragments (Mr = 32,000, 16,000, and 6,000) which could be resolved by Sephadex G-75 and purified further on DEAE-cellulose columns. One of the peptides (Mr = 32,000) bound 2 mol cAMP/mol fragment. The Mr = 16,000 fragment was very labile and bound cAMP with an undetermined stoichiometry. Cyclic AMP dissociation curves for the native regulatory subunit and its Mr = 32,000 component were similar and suggested the presence of two nonidentical binding sites in each monomer. Using the same procedure, the Mr = 16,000 fragment or homogenous cGMP-dependent protein kinase appeared to contain a single type of binding site. Purified Mr = 32,000 fragment was readily converted to the Mr = 16,000 fragment using high trypsin as assessed by protein bands on SDS-disc gels or by following transfer of radioactivity from Mr = 32,000 peptide covalently labeled with 8-N3-[32P] cAMP to radiolabeled Mr = 16,000 fragment. The smallest regulatory subunit fragment (Mr = 6,000) did not bind cAMP, but was dimeric and could be part of the dimerization domain in the native protein. A model is presented to explain the possible structural-functional relationships of the regulatory subunit.  相似文献   

13.
Several methods were compared for estimating the amount of regulatory subunit of an 800-fold purified Type II cAMP-dependent protein kinase from bovine heart. These methods included a reversable binding assay using either cAMP, or 8-N3-[32P]cAMP, photoaffinity labeling with 8-N3-[32P]cAMP, and autophosphorylation of the regulatory subunit of the enzyme. Although the regulatory subunit had a slightly lower affinity for 8-N3-cAMP than for cAMP, the total amount of regulatory subunit could be determined by each of the procedures examined. The results indicate that the photoaffinity analog 8-N3-[32P]cAMP is able to label quantitatively all cAMP-binding sites of the regulatory subunit of this cAMP-dependent protein kinase.  相似文献   

14.
In this paper, we describe photoaffinity labeling and related studies of human serum vitamin D binding protein (hDBP) with 25-hydroxyvitamin D3 3 beta-3'-[N-(4-azido-2-nitrophenyl)amino]propyl ether (25-ANE) and its radiolabeled counterpart, i.e., 25-hydroxyvitamin D3 3 beta-3'-[N-(4-azido-2-nitro-[3,5-3H]phenyl)amino]propyl ether (3H-25-ANE) (Ray et al., 1986, 1991). We have carried out studies to demonstrate that (1) 25-ANE competes with 25-OH-D3 for the binding site of the latter in hDBP and (2) 3H-25-ANE is capable of covalently labeling the hDBP molecule when exposed to UV light. Treatment of a sample of purified hDBP, labeled with 3H-25-ANE, with BNPS-skatole produced two Coomassie Blue stained peptide fragments, and the majority of the radioactivity was associated with the smaller of the two peptide fragments (16.5 kDa). On the other hand, cleavage of the labeled protein with cyanogen bromide produced a peptide (11.5 kDa) containing most of the covalently attached radioactivity. Considering the primary amino acid structure of hDBP, this peptide fragment (11.5 kDa) represents the N-terminus through residue 108 of the intact protein. Thus, our results tentatively identify this segment of the protein containing the binding pocket for 25-OH-D3.  相似文献   

15.
Inactivation of the bovine heart mitochondrial F1-ATPase, taken as alpha 3 beta 3 gamma delta epsilon with a molecular weight of 375,000, with a 4-fold molar excess of 7-chloro-4-nitro[14C]benzofurazan at pH 7.5, led to the incorporation of 1.42 g atoms of 14C/mol. Treatment of the inactivated enzyme with dithiothreitol removed 0.99 g atom of 14C/mol of enzyme which was accompanied by reactivation of the ATPase. Therefore, of the 1.42 mol of 7-chloro-4-nitro-[14C]benzofurazan incorporated per mol of bovine heart mitochondrial F1-ATPase, 0.43 mol was present on lysine residues and 0.99 mol was present on tyrosine residues. When the inactivated enzyme was treated with 10 mM sodium dithionite at pH 6.0, 10% of the activity was recovered which was accompanied by a 10% loss in covalently bound 14C. Following dithionite treatment, that part of the 14C which remained covalently bound could not be removed by subsequent treatment of the labeled enzyme with dithiothreitol. It is presumed that dithionite reduces the 4-nitro group of the covalently bound reagent, converting it to 4-amino[14C]benzofurazan derivatives at lysine and tyrosine residues. The moles of 4-amino[14C]benzofurazan incorporated per mol of the isolated subunits were: alpha, 0.18; beta, 0.30; gamma, 0.03; and delta plus epsilon, less than 0.01. Gel filtration of a cyanogen bromide digest of the labeled beta subunit on Sephadex G-75 resolved a major 14C peak which contained 83% of the 14C recovered. The major, radioactive tryptic fragment derived from this peak was purified by gel filtration on Sephadex G-75 followed by reversed phase high performance liquid chromatography. Automatic Edman degradation of this peptide showed that the 14C was released at the position occupied by beta-Tyr-311.  相似文献   

16.
Adenosine 3':5'-monophosphate receptor proteins in mammalian brain.   总被引:1,自引:0,他引:1  
cAMP receptor proteins present in mammalian brain were identified and characterized with the use of the photoaffinity label 8-azido[32P]cAMP. Cytosol and membrane fractions from various regions of rat, guinea pig, and bovine brain contained two specific cAMP receptor proteins with apparent molecular weights of 47,000 and 52,000 to 55,000. Subcellular fractionation studies showed the highest amounts of these cAMP receptor proteins associated with cytosol fractions and synaptic membrane fractions. For both the cytosol and membrane fractions, the two cAMP receptor proteins represented almost all of the proteins specifically labeled by 8-azidol[32P]cAMP and appeared to be the regulatory subunits of cAMP-dependent protein kinases.  相似文献   

17.
Tyrosine residues 311 and 345 of the beta subunit of the bovine heart mitochondrial F1-ATPase (MF1) are present on the same peptide when the enzyme is fragmented with cyanogen bromide. Maximal inactivation of MF1 with 7-chloro-4-nitro[14C]benzofurazan [( 14C]Nbf-Cl) derivatizes tyrosine-311 in a single beta subunit. Cyanogen bromide digests of MF1 containing the [14C]Nbf-O-derivative of tyrosine-beta 311 were submitted to reversed-phase HPLC, with and without prior reduction of the nitro group on the incorporated reagent with dithionite. The retention time of the radioactive cyanogen bromide peptide was shifted substantially by reduction. When a cyanogen bromide digest of MF1 inactivated with 5'-p-fluorosulfonylbenzoyl[3H]inosine [( 3H]FSBI), which proceeds with derivatization of tyrosine-345 in a single beta subunit, was submitted to HPLC under the same conditions, the fragment labeled with 3H eluted with the same retention time as the [14C]Nbf-O-derivative before reduction. Doubly labeled enzyme was prepared by first derivatizing Tyr-beta 311 with [14C]Nbf-Cl and then derivatizing tyrosine-beta 345 with [3H]FSBI with and without reducing the [14C]Nbf-O-derivative of tyrosine-beta 311 with dithionite before modification with [3H]FSBI. The doubly labeled enzyme preparations were digested with cyanogen bromide and submitted to HPLC. The 14C and 3H in the cyanogen bromide digest prepared from doubly labeled enzyme not submitted to reduction eluted together. In contrast, the 14C and 3H in the digest prepared from doubly labeled enzyme which had been reduced eluted separately. From these results it is concluded that different beta subunits are derivatized when MF1 is doubly labeled with [14C]Nbf-Cl and [3H]FSBI.  相似文献   

18.
Inhibition studies with the photoreactive AMP analog, 8-azidoadenosine 5'-monophosphate (8-azido-AMP), demonstrate that this compound is, like AMP, an allosteric inhibitor of pig kidney and muscle fructose-1,6-biphosphateses. Photolysis of a mixture of purified pig kidney fructose-1,6-biphosphate and 8-azido-[14C]AMP results in the loss of enzyme activity and the reagent is incorporated to the protein. The incorporation of reagent linearly correlates with the loss of enzyme activity. Extrapolation to zero activity correlates with the incorporation of 3.7 mol of reagent/mol of enzyme (i.e. 0.9 per subunit). Thus, 8-azido-AMP appears to be a photoaffinity label for the allosteric AMP binding site of fructose-1,6-biphosphatase.  相似文献   

19.
The nucleotide affinity label 2-(4-bromo-2,3-dioxobutylthio)adenosine 5'-diphosphate (2-BDB-TADP) reacts covalently with pig heart NAD+-dependent isocitrate dehydrogenase with a limiting value of 75% inactivation and loss of ADP activation concomitant with incorporation of about 1 mol of reagent/mol of average enzyme subunit (Huang, Y.-C., Bailey, J. M., and Colman, R. F. (1986) J. Biol. Chem. 251, 14100-14107). Complete protection against the functional changes is provided by ADP + Mn2+, and reagent incorporation is decreased to about 0.5 mol/mol of average enzyme subunit. We have now identified the critical modified peptide by comparison of the peptides labeled by 2-BDB-TADP at pH 6.8 in the absence and presence of ADP + Mn2+. After removal of excess reagent, modified enzyme was treated with [3H]NaBH4 to reduce the keto groups of the reagent and introduce a radioactive tracer into the reagent which is covalently linked to the protein. Following carboxymethylation and digestion with trypsin, the specific modified peptide was isolated using two successive high performance liquid chromatography steps: 1) 0.1% trifluoroacetic acid with an acetonitrile gradient; and 2) 20 mM ammonium acetate, pH 5.8, with an acetonitrile gradient. Gas phase sequencing gave the modified peptide Leu-Gly-Asp-Gly-Leu-Phe-Leu-Gln in which aspartic acid is the target of 2-BDB-TADP. Isolation of the corresponding tryptic peptide from unmodified enzyme yielded the sequence Leu-Gly-Asp-Gly-Leu-Phe-Leu-Gln-CmCys-CmCys-Lys. Isocitrate dehydrogenase is composed of three distinct subunits (alpha, beta, and gamma), separable by chromatofocusing in urea and identified by analytical gel isoelectric focusing. The evidence indicates that the specific peptide labeled by 2-BDB-TADP, which is at or near the ADP site, can be derived from the gamma subunit.  相似文献   

20.
Two protein bands, present in cytosol fractions from each of seven rat tissues examined, specifically incorporated 32P-labeled 8-azidoadenosine 3':5'-monophosphate (8-N3-[32P]cAMP), a photoaffinity label for cAMP-binding sites. These proteins had apparent molecular weights of 47,000 and 54,000 on a sodium dodecyl sulfate-polyacrylamide gel electrophoresis system. These two proteins were characterized in three of the tissues, namely, heart, uterus, and liver, by the total amount of 8-N3-[32P]cAMP incorporation, by the dissociation constant (Kd) for 8-N3-[32P]cAMP, and by the nucleotide specific inhibition of 8-N3-[32P]cAMP incorporation. Several lines of evidence were obtained that the protein with an apparent molecular weight of 47,000 represents the regulatory subunit of a type I cAMP-dependent protein kinase, while the protein with an apparent molecular weight of 54,000 represents the regulatory subunit of a type II cAMP-dependent protein kinase. Almost all of the cAMP receptor protein found in the cytosol of these tissues, as measured by 8-N3-[32P]cAMP incorporation, was associated with these two protein kinases, in agreement with the idea that most effects of cAMP are mediated through protein kinases. The photoaffinity labeling with 8-N3-[32P]cAMP can be used to estimate quantitatively the amounts of regulatory subunit of type I and type II cAMP-dependent protein kinases in various tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号