首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polyandry, i.e. mating with multiple males within one reproductive event, is a common female mating strategy but its adaptive function is often unclear. We tested whether polyandrous females gain genetic benefits by comparing fitness traits of monandrous (mated twice with a single male) and polyandrous (mated twice with two different males) female bank voles Clethrionomys glareolus. We raised the offspring in the laboratory until adulthood and measured their body size, before releasing them to outdoor enclosures to overwinter. At the onset of the breeding season in the following spring, we found that offspring of polyandrous females performed significantly better at reproduction than those of monandrous females. This was mainly due to sons of polyandrous females producing significantly more offspring than those of monandrous females. No significant differences were found for offspring body mass or winter survival between the two treatments. Our results appear to provide evidence that bank vole females gain long-term benefits from polyandry.  相似文献   

2.
The genetic incompatibility avoidance hypothesis as an explanation for the polyandrous mating strategies (mating with more than one male) of females of many species has received significant attention in recent years. It has received support from both empirical studies and a meta-analysis, which concludes that polyandrous females enjoy increased reproductive success through improved offspring viability relative to monandrous females. In this study we investigate whether polyandrous female Drosophila simulans improve their fitness relative to monandrous females in the face of severe Wolbachia-associated reproductive incompatibilities. We use the results of this study to develop models that test the predictions that Wolbachia should promote polyandry, and that polyandry itself may constrain the spread of Wolbachia. Uniquely, our models allow biologically relevant rates of incompatibility to coevolve with a polyandry modifier allele, which allows us to evaluate the fate of the modifier and that of Wolbachia. Our empirical results reveal that polyandrous females significantly reduce the reproductive costs of Wolbachia, owing to infected males being poor sperm competitors. The models show that this disadvantage in sperm competition can inhibit or prevent the invasion of Wolbachia. However, despite the increased reproductive success obtained by polyandrous females, the spread of a polyandry modifier allele is constrained by any costs that might be associated with polyandry and the low frequency of incompatible matings when Wolbachia has reached a stable equilibrium. Therefore, although incompatibility avoidance may be a benefit of polyandry, our findings do not support the hypothesis that genetic incompatibilities caused by Wolbachia promote the evolution of polyandry.  相似文献   

3.
This study examined whether polyandrous female Chinook salmon Oncorhynchus tshawytscha obtain benefits compared with monandrous females through an increase in hatching success. Both of the alternative reproductive tactics present in male O. tshawytscha (large hooknoses and small, precocious jacks) were used, such that eggs were either fertilized by a single male (from each tactic) or multiple males (using two males from the same or different tactics). The results show that fertilized eggs from the polyandrous treatments had a significantly higher hatching success than those from the monandrous treatments. It is also shown that sperm speed was positively related with offspring hatching success. Finally, there were tactic‐specific effects on the benefits females received. The inclusion of jacks in any cross resulted in offspring with higher hatching success, with the cross that involved a male from each tactic providing offspring with the highest hatching success than any other cross. This study has important implications for the evolution of multiple mating and why it is so prevalent across taxa, while also providing knowledge on the evolution of mating systems, specifically those with alternative reproductive tactics.  相似文献   

4.
Maintenance of health and the production of offspring are competing processes that can result in trade-offs. As vertebrates invest substantial resources in their immune system, it is crucial to understand the interactions between immunity and reproductive strategies. In the lizard Zootoca vivipara, females have condition- and context-dependent mating strategies. We predicted that, if the risk of infection is higher for polyandrous females, then polyandrous females should invest more in immune system while monandrous females should invest more in reproduction. In order to test our prediction, we captured 62 gravid females of known age in a natural population; we kept them until parturition to access to their offspring. Then, using microsatellite marker-based paternity analyses within litters, we determine the mating strategy of females (monandrous or polyandrous). Females were also challenged with PHA to estimate their inflammatory response. Our results show that polyandrous females have a higher PHA response than the monandrous females, and that monandrous females produce more males and more juveniles of better body condition than polyandrous females. The relationship between mating behaviour and immune function may have consequences for females and may shape the evolution of mating systems.  相似文献   

5.
The evolution of viviparity increases the potential for genomic conflicts between mothers and offspring over the level of maternal investment. The viviparity-driven-conflict hypothesis predicts that such conflicts will drive the evolution of asymmetrical reproductive isolation between populations with divergent mating systems. We tested this hypothesis using crosses between populations of a poeciliid fish that differ in their level of polyandry. Our results support the prediction of an asymmetry in the rate of spontaneous abortion in reciprocal crosses, with the highest rate occurring in crosses between females from a relatively monandrous population and males from a relatively polyandrous population. The patterns of offspring size were not consistent with the pattern predicted by the viviparity-driven-conflict hypothesis: crosses between a monandrous female and a polyandrous male did not produce larger offspring than the reciprocal cross. This discrepancy was due to the presence of an effect of the maternal population on offspring size: polyandrous females produced larger offspring than monandrous females. In addition, offspring size was positively correlated with maternal size in crosses involving a polyandrous male. We discuss these results in light of models for intra- and intergenomic epistasis and the rapid origin of asymmetric reproductive isolation in viviparous taxa.  相似文献   

6.
Monandry and polyandry as alternative lifestyles in a butterfly   总被引:10,自引:3,他引:7  
Butterflies show considerable variability in female mating frequency, ranging from monandrous species to females mating several timesin their lifetime. Degree of polyandry also varies within species,with some females only mating once and others mating multiply.Previous studies have shown that one reason for female multiplemating is to obtain nutritious male donations that both increasethe longevity of females and result in higher lifetime fecundity.Despite the presence of male nutrient donations, some femalesof the green-veined white butterfly (Pieridae: Pieris napi)never mate more than once. In this study, we examined thisapparent paradox. We assessed to what degree polyandry is undergenetic control by a full-sib analysis, and we also estimatedthe broad sense heritability of female lifetime fecundity in singly mated females. Both polyandry and lifetime fecundityhave a genetic component. However, degree of polyandry appearsto be traded off against reduced longevity when denied theopportunity to mate more than once. It is possible that femaleP. napi display different reproductive strategies, with somefemales relying on male donations to realize their potentialfecundity and others relying on their own resources for egg production. In nature, polyandrous females may be preventedfrom mating multiply due to unfavorable weather. We discussthe possibility that the trade-off between degree of polyandryand life span when singly mated may affect the maintenanceof genetic variability in female mating frequency in this species.Possible reasons for these different reproductive strategiesare discussed.  相似文献   

7.
Polyandry-induced sperm competition is assumed to impose costson males through reduced per capita paternity success. In contrast,studies focusing on the consequences of polyandry for femalesreport increased oviposition rates and fertility. For thesespecies, there is potential for the increased female fecundityassociated with polyandry to offset the costs to males of sharedpaternity. We tested this hypothesis by comparing the proportionand number of offspring sired by males mated with monandrousand polyandrous females in the hide beetle, Dermestes maculates,both for males mating with different females and for males rematingwith the same female. In 4 mating treatments, monandrous femalesmated either once or twice with the same male and polyandrousfemales mated either twice with 2 different males or thricewith 2 males (where 1 male mated twice). Polyandrous and twice-matingmonandrous females displayed greater fecundity and fertilitythan singly mating monandrous females. Moreover, males rematedto the same female had greater paternity regardless of whetherthat female mated with another male. In both polyandrous treatments,male mating order did not affect paternity success. Finally,although the proportion of eggs sired decreased if a male matedwith a polyandrous female, multiply mating females or femalesthat remated with a previous mate laid significantly more eggsand thus the actual number of eggs sired was comparable. Thus,males do not necessarily accrue a net fitness loss when matingwith polyandrous females. This may explain the absence of anyobvious defensive paternity-protection traits in hide beetlesand other species.  相似文献   

8.
It is widely accepted that male age can influence female mating preference and subsequent fitness consequences in many polyandrous species, yet this is seldom investigated in monandrous species. In the present study, we use the monandrous pine moth Dendrolimus punctatus to examine the effects of male age on female mating preference and future reproductive potential. In multiple male trials, when permitted free mating from an aggregation consisting of virgin males aged 0 (young), 2 (middle-aged) and 4 (old) days, virgin females preferentially mate with young and middle-aged males, although mating latency and mating duration are independent of male age. In single male trials, when virgin females are randomly assigned single virgin males of known age, a negative correlation is found between mating success and male age in this species. However, we find that male age also has no effect on mating latency and mating duration. Further fitness analysis reveals that females do not receive benefits in terms of oviposition period, total egg production, average daily egg production, percentage of egg hatching, longevity, expected reproduction and relative expected reproduction from mating with young and middle-aged males compared with mating with old males. The results of the present study are the first demonstrate that females mated preferentially with younger males but gain no apparent fitness benefits in a monandrous moth species.  相似文献   

9.
Given the costs of multiple mating, why has female polyandry evolved? Utetheisa ornatrix moths are well suited for studying multiple mating in females because females are highly polyandrous over their life span, with each male mate transferring a substantial spermatophore with both genetic and nongenetic material. The accumulation of resources might explain the prevalence of polyandry in this species, but another, not mutually exclusive, possibility is that females mate multiply to increase the probability that their sons will inherit more‐competitive sperm. This latter “sexy‐sperm” hypothesis posits that female multiple mating and male sperm competitiveness coevolve via a Fisherian runaway process. We tested the sexy‐sperm hypothesis by using competitive double matings to compare the sperm competition success of sons of polyandrous versus monandrous females. In accordance with sexy‐sperm theory, we found that in 511 offspring across 17 families, the male whose polyandrous mother mated once with each of three different males sired significantly more of all total offspring (81%) than did the male whose monandrous mother was mated thrice to a single male. Interestingly, sons of polyandrous mothers had a significantly biased sex ratio of their brood toward sons, also in support of the hypothesis.  相似文献   

10.
The length of the favourable season determines voltinism in insect populations. In some insects, there is variation in fecundity and timing of reproduction among females. If the length of the favourable season does not allow all offspring to develop into adults without diapause, the benefits of high early fecundity may outweigh the associated cost of low lifetime fecundity. We tested this by exploring mating frequencies of Pieris napi females along a latitudinal gradient in different generations. Pieris napi is a bivoltine butterfly, and genetically polyandrous females enjoy higher lifetime fecundity than monandrous ones. Polyandry is, however, coupled with a relatively low early fecundity. We found that monandrous females are more likely to produce an additional generation than polyandrous ones under conditions that allow production of only a partial summer generation. Monandrous females were also the first to emerge and slightly over-represented in the summer generation under conditions that allow the development of a complete summer generation. Further, a stochastic model shows that variation in the timing of reproduction between strategies is sufficient to explain the observed patterns. Thus, seasonality may counter-select against polyandry, or more generally against low early reproductive rate, and promote maintenance of polymorphism in life history strategies.  相似文献   

11.
The maintenance of female polyandry has traditionally been attributed to the material (direct) benefits derived from male mating resources (e.g. nuptial gifts) accrued by multiple mating. However, genetic (indirect) benefits offer a more robust explanation since only polyandrous, not monandrous, females may gain both material benefits from multiple mating and genetic benefits from multiple sires. Discriminating between material and genetic benefits is essential when addressing the mechanism by which polyandry is adaptively maintained, but are difficult to disentangle because they affect fitness in similar ways. To test the hypothesis that genetic benefits maintain polyandry, we compared four components of fitness (longevity, fecundity, hatching success and survivorship) between monandrous and polyandrous females in the ground cricket, Allonemobius socius. We discovered that females derived nongenetic benefits from mating multiply, in that the magnitude of the nuptial gift was positively associated with the number of eggs produced. However, polyandrous females had over a two-fold greater hatching success and a 43% greater offspring survivorship, leading to a significantly higher relative fitness than the monandrous strategy. These results were independent of the confounding effects of material benefits, implying that genetic contributions play a large role in the maintenance of polyandry and potentially in the antagonistic coevolutionary relationship between polyandry and male nuptial gifts. Copyright 2002 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour  相似文献   

12.
Some of the genetic benefit hypotheses put forward to explain multiple male mating (polyandry) predict that sons of polyandrous females will have an increased competitive ability under precopulatory or post‐copulatory competition via paternally inherited traits, such as attractiveness or fertilization efficiency. Here, we tested these predictions by comparing the competitive ability of sons of experimentally monandrous and polyandrous female bank voles (Myodes glareolus), while controlling for potential material and maternal effects. In female choice experiments, we found no clear preference for sons of either monandrous or polyandrous mothers. Moreover, neither male type was dominant over the other, indicating no advantage in precopulatory male contest competition. However, in competitive matings, sons of polyandrous mothers significantly increased their mating efforts (mating duration, intromission number). In line with this, paternity success was biased towards sons of polyandrous mothers. Because there was no evidence for maternal effects, our results suggest that female bank voles gain genetic benefits from polyandry.  相似文献   

13.
In insects, spermatophore production represents a non‐trivial cost to a male. Non‐virgin males have been shown to produce small spermatophores at subsequent matings. Particularly in monandrous species, it may be an issue to receive a sufficiently large spermatophore at the first and typically only mating. Females of the monandrous Speckled wood butterfly Pararge aegeria (L.) produce fewer offspring after mating with a non‐virgin male. After mating, females spend all their active time selecting oviposition sites and typically ignore other males. Here, we show that females did not discriminate between a virgin male and a recently mated male in our laboratory experiments. We demonstrate that the number of eupyrene sperm bundles relative to spermatophore mass differed with subsequent male matings. Males transferred a significantly smaller spermatophore after the first copulation, but the spermatophore mass did not decrease further with subsequent matings. However, the number of eupyrene sperm bundles decreased linearly. Therefore, there was proportionally more eupyrene sperm in the male’s second spermatophore compared with the first and the later spermatophores. Such a pattern has been shown in polyandrous species. Hence, it suggests that differences in sperm allocation strategy between polyandrous and monandrous butterflies may be quantitative rather than qualitative. There was also a tendency for females that had mated with a recently mated male to have higher propensity to remate than did females that had mated with a virgin male. We discuss the results relative to the mating system in P. aegeria, including female remating opportunities in the field and male mate‐locating behaviour.  相似文献   

14.
A potential benefit to females mating with multiple males is the increased probability that their sons will inherit traits enhancing their pre‐ or post‐mating ability to obtain fertilizations. We allowed red flour beetle (Tribolium castaneum) females to mate on three consecutive days either repeatedly to the same male or to three different males. This procedure was carried out in 20 replicate lines, 10 established with wild‐type, and 10 with the Chicago black morph, a partially dominant phenotypic marker. The paternity achieved by the sons of females from polyandrous vs. monandrous lines of contrasting morph was assessed in the F1, F2 and F3 generation by mating wild‐type stock females to two experimental males and assigning the progeny to either sire based on phenotype. The sons of polyandrous wild‐type females achieved significantly higher paternity when mating in the second male role than the sons of monandrous wild‐type females. By contrast, when mating in the first male role, males produced by females from polyandrous lines tended to have lower paternity than males from monandrous lines. Both effects were independent of the number of mates of the black competitor’s mother, and interacted significantly with the number of progeny laid by the female. These results provide the first evidence that manipulating the number of mates of a female can influence her sons’ mating success and suggest a potential trade‐off between offence and defence in this species.  相似文献   

15.
Body size is often related to reproductive success in insects, but the direction and strength of this relationship differs greatly among systems. We studied the effects of adult size on probability of mating and egg production in the Miami blue butterfly. We found that likelihood of mating was invariant with respect to size. Larger females lived longer, and both size and lifespan positively influenced egg production. However, neither the number of copulations nor the size of male mates had any effect on female fecundity. We discuss these results in the context of butterfly mating systems, larval growth strategies and the possible effects of captive conditions on reproductive behavior.  相似文献   

16.
Genetic benefits are potentially the most robust explanation of the controversial issue of evolutionary maintenance of polyandry, but the unambiguous demonstration of such benefits has been hindered by the possibility of their confusion with maternal effects. Previous research has shown that polyandrous bulb mite females produce daughters with higher fecundity than monandrous females. Here, we investigate whether this effect arises because polyandrous females invest more in their offspring, or because their offspring inherit 'good genes' from their fathers. Females were mated with either one or four (different) males. However, by sterilizing three of the four males with ionizing radiation, we eliminated any chance of sexual selection (in the polyandrous treatment) so that any differences in the female mating regimes must have been owing to maternal effects. Polyandry had no significant effect on daughter fecundity, thus indicating that any previously documented effects must have been genetic. This was further supported by a significant association between fathers' offensive sperm-competitive ability and the fecundity of their daughters. The association with fathers' sperm defensive ability was not significant, and neither was the association between fathers' sperm competitiveness and sons' reproductive success. However, sons of polyandrous females had lower reproductive success than sons of monandrous females. This shows that the maternal effects of polyandry should be taken into account whenever its costs and benefits are being considered.  相似文献   

17.
A cross-taxonomic comparison of resources allocated to reproductive reserves at adult eclosion reveals that females belonging to polyandrous species receive more ejaculate material and allocate proportionally less of their total reserves to potential reproduction compared to females belonging to monandrous species. These results suggest that adult females of polyandrous species have a higher expected nutrient income and are consistent with the idea that females can benefit from male nutrient donations transferred during mating. Males show the opposite pattern: males of polyandrous species allocate proportionally more to reproduction. This is expected since males in polyandrous species have both proportionally heavier ejaculates and have a higher ejaculative production capacity than do males in monandrous species. Interestingly, adults of the genus Heliconius which can obtain nutrients crucial to reproduction by pollen feeding do not seem to follow these patterns as strong as only nectar-feeding butterflies. Instead, the association between degree of polyandry and resources allocated to reproduction is relaxed.  相似文献   

18.
White J  Richard M  Massot M  Meylan S 《PloS one》2011,6(7):e22339
Sexually transmitted diseases have often been suggested as a potential cost of multiple mating and as playing a major role in the evolution of mating systems. Yet there is little empirical data relating mating strategies to sexually transmitted microorganisms in wild populations. We investigated whether mating behaviour influences the diversity and composition of cloacal assemblages by comparing bacterial communities in the cloaca of monandrous and polyandrous female common lizards Zootoca vivipara sampled after the mating period. We found that polyandrous females harboured more diverse communities and differed more in community composition than did monandrous females. Furthermore, cloacal diversity and variability were found to decrease with age in polyandrous females. Our results suggest that the higher bacterial diversity found in polyandrous females is due to the sexual transmission of bacteria by multiple mates. The impact of mating behaviour on the cloacal microbiota may have fitness consequences for females and may comprise a selective pressure shaping the evolution of mating systems.  相似文献   

19.
Effective population size (N(e)) is important because it describes how evolutionary forces will affect a population. The effect of multiple sires per female on N(e) has been the subject of some debate, at the crux of which is the effects of monandry and multiple-paternity (MP) on male variance in reproductive success. In both mating systems, females mate with several males over their lifetimes, but sire offspring with one male at a time in the former and have several sires per clutch in the latter. First, I theoretically show that whether the annual male variance in reproductive success in an MP population is greater or less than that of a monandrous population depends on the distributions of within-clutch paternity. Then, I simulated different distributions of within-clutch paternity under a range of parameters that characterize natural populations to show that an MP population can have an N(e) smaller or larger than that of a monandrous population with otherwise equal dynamics. The N(e(MP)):N(e(Monandry)) ratio increased with mating frequency and female variance in reproductive success, was equalized by long generation times, and was affected by the distribution of within-clutch paternities. The results of this model provide a unifying framework for the debate.  相似文献   

20.
P. Pandey 《Journal of Asia》2010,13(2):151-155
The influence of polyandry on the reproductive performance of females and on offspring fitness in Zygogramma bicolorata Pallister was investigated using four experimental treatments, viz. (A) monandrous, limited mating, (B) monandrous, unlimited mating, (C) polyandrous, no-choice limited mating, and (D) polyandrous, mate choice unlimited mating. Polyandrous females had higher reproductive performance than monandrous ones. Monandrous females subjected to unlimited matings had higher egg viability than those subjected to limited matings, but fecundity did not differ significantly. In polyandrous females, the freedom to choose mates did not affect reproductive performance. However, offspring of polyandrous females allowed mate choice developed fastest and had the highest survival at 25, 27, and 30 °C. Thus, polyandry in Z. bicolorata appears to provide both direct (material) and indirect (genetic) benefits resulting in better reproductive performance and increased adaptability of the offspring to counter environmental stresses. The present study not only adds to the knowledge of reproductive biology of Z. bicolorata but it could also be of economic value as it may help in the mass rearing of Z. bicolorata and in the management of Parthenium hysterophorus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号